
UNIT 1 

SIMPLE STRESSES & STRAINS 



Course Objectives: 

 To understand the nature of stresses induced in material under different loads.

Course Outcomes: 

 Determine the simple stresses and strains when members are subjected to axial loads.



Simple Stresses and Strains

 Expressions for stresses and strains is derived with the following assumptions:

1. For the range of forces applied the material is elastic i.e. it can regain its original shape and
size, if the applied force is removed.

2. Material is homogeneous i.e. every particle of the material possesses identical mechanical
properties.

3. Material is isotropic i.e. the material possesses identical mechanical property at any point in
any direction.
Presenting the typical stress-strain curve for a typical steel, the commonly referred terms like

limits of elasticity and proportionality, yield points, ultimate strength and strain hardening are explained.
Linear elastic theory is developed to analyse different types of members subject to axial, shear,

thermal and hoop stresses.

MEANING OF STRESS

When a member is subjected to loads it develops resisting forces. To find the resisting forces 
developed a section plane may be passed through the member and equilibrium of any one part may 
be considered. Each part is in equilibrium under the action of applied forces and internal resisting 
forces. The resisting forces may be conveniently split into normal and parallel to the section plane. 
The resisting force parallel to the plane is called shearing resistance. The intensity of resisting force 
normal to the sectional plane is called intensity of Normal Stress  (Ref. Fig.).
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Normal Stress = p = lim
∆A

In practice, intensity of stress is called as ‘‘stress’’ only. Mathematically

∆R
→ 0 ∆A

= 
dR

dA
...(1)

where R is normal resisting force.
The intensity of resisting force parallel to the sectional plane is called Shearing Stress (q).

 Shearing Stress = q = lim
∆A → 0

∆Q
A

 = 
dQ

dA
...(2)

∆



where Q is Shearing Resistance.
Thus, stress at any point may be defined as resistance developed per unit area. From equations 

(1) and (2), it follows that
  dR = pdA

or   R = ∫ pdA ...(3a)

and  Q = ∫ qdA
...(3b)

At any cross-section, stress developed may or may not be uniform. In a bar of uniform cross-
section subject to axial concentrated loads as shown in Fig. 2a, the stress is uniform at a section 
away from the applied loads (Fig. 2b); but there is variation of stress at the section  near the applied 
loads (Fig. 2c).
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Similarly stress near the hole or at fillets will not be uniform as shown in Figs. 3 and 4. It is 
very common that at some points in such regions maximum stress will be as high as 2 to 4 times 
the average stresses.

P

P

P
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UNIT OF STRESS

When Newton is taken as unit of force and millimetre as unit of area, unit of stress will be
N/mm2. The other derived units used in practice are kN/mm2, N/m2, kN/m2 or MN/m2. A stress of
one N/m2 is known as Pascal and is represented by Pa.

Hence, 1 MPa = 1 MN/m2 = 1 × 106 N/(1000 mm)2 = 1 N/mm2.

Thus one Mega Pascal is equal to 1 N/mm2. In most of the standard codes published unit of stress
has been used as Mega Pascal (MPa or N/mm2).

AXIAL STRESS

Consider a bar subjected to force P as shown in Fig. 5. To maintain the equilibrium the end forces 
applied must be the same, say P.
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The resisting forces acting on a section are shown in Fig. 5b. Now since the stresses are 
uniform

 R = ∫ pdA = p ∫ dA = pA ...(4)
where A is the cross-sectional area.

Considering the equilibrium of a cut piece of the bar, we get

 P  = R ...(5)
From equations (4) and (5), we get

 P = pA

Thus, in case of axial load ‘P’ the stress developed is equal to the load per unit area. Under
this type of normal stresses the bar is being extended. Such stress which is causing extension of the
bar is called tensile stress.

A bar subjected to two equal forces pushing the bar is shown in Fig. 6. It causes shortening 
of the bar. Such forces which are causing shortening, are known as compressive forces and 
corresponding stresses as compressive stresses.
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Now R = ∫ pdA = p ∫ dA (as stress is assumed uniform)
For equilibrium of the piece of the bar

 P = R = pA

or  p = 
P

A
 as in equation 6

Thus, whether it is tensile or compressive, the stress developed in a bar subjected to axial forces,
is equal to load per unit area.



STRAIN

No material is perfectly rigid. Under the action of forces a rubber undergoes changes in shape and
size. This phenomenon is very well known to all since in case of rubber, even for small forces
deformations are quite large. Actually all materials including steel, cast iron, brass, concrete, etc.
undergo similar deformation when loaded. But the deformations are very small and hence we cannot
see them with naked eye. There are instruments like extensometer, electric strain gauges which can
measure extension of magnitude 1/100th, 1/1000th of a millimetre. There are machines like universal
testing machines in which bars of different materials can be subjected to accurately known forces of
magnitude as high as 1000 kN. The studies have shown that the bars extend under tensile force and
shorten under compressive forces as shown in Fig. 8.7. The change in length per unit length is known
as linear strain. Thus,

 Linear Strain = 
Change in Length

Original Length

e = 
∆
L

...(7)
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When changes in longitudinal direction is taking place changes in lateral direction also take 
place. The nature of these changes in lateral direction are exactly opposite to that of changes in 
longitudinal direction i.e., if extension is taking place in longitudinal direction, the shortening of 
lateral dimension takes place and if shortening is taking place in longitudinal direction extension 
takes place in lateral directions (See Fig. 7). The lateral strain may be defined as changes in the 
lateral dimension per unit lateral dimension. Thus,

 Lateral Strain = 
Change in Lateral Dimension

Original Lateral Dimension

= =′ −b b

b

b

b

δ
...(8)

STRESS-STRAIN RELATION

The stress-strain relation of any material is obtained by conducting tension test in the laboratories
on standard specimen. Different materials behave differently and their behaviour in tension and in
compression differ slightly.

Behaviour in Tension

Mild steel. Figure 8 shows a typical tensile test specimen of mild steel. Its ends are gripped into 
universal testing machine. Extensometer is fitted to test specimen which measures extension over the
length L1, shown in Fig. 8. The length over which extension is mesured is called  gauge length. 
The load is applied gradually and at regular interval of loads extension is measured. After certain 
load, extension increases at faster rate and the capacity of extensometer  to measure extension comes 
to an end and, hence, it is removed before this stage is reached and extension is measured from scale 
on the universal testing machine. Load is increased gradually till the specimen breaks.
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Fig. 8. Tension Test Specimen Fig. 9. Tension Test Specimen after Breaking

Load divided by original cross-sectional area
is called as nominal stress or simply as stress.
Strain is obtained by dividing extensometer
readings by gauge length of extensometer (L1)
and by dividing scale readings by grip to grip
length of the specimen (L2). Figure 810 shows 
stress vs strain diagram for the typical mild steel 
specimen. The following salient points are 
observed on stress-strain curve:

(a) Limit of Proportionality (A): It is the
limiting value of the stress up to which
stress is proportional to strain.

(b) Elastic Limit: This is the limiting value
of stress up to which if the material is
stressed and then released (unloaded) strain disappears completely and the original length
is regained. This point is slightly beyond the limit of proportionality.

(c) Upper Yield Point (B): This is the stress at which, the load starts reducing and the extension
increases. This phenomenon is called yielding of material. At this stage strain is about 0.125
per cent and stress is about 250 N/mm2.

(d) Lower Yield Point (C): At this stage the stress remains same but strain increases for some
time.

(e) Ultimate Stress (D): This is the maximum stress the material can resist. This stress is about
370–400 N/mm2. At this stage cross-sectional area at a particular section starts reducing very
fast (Fig. 8.9). This is called neck formation. After this stage load resisted and hence the
stress developed starts reducing.

(f) Breaking Point (E): The stress at which finally the specimen fails is called breaking point.
At this strain is 20 to 25 per cent.

If unloading is made within elastic limit the original length is regained i.e., the stress-strain curve
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follows down the loading curve shown in Fig. 8.6. If unloading is made after loading the specimen 
beyond elastic limit, it follows a straight line parallel to the original straight portion as shown by line 
FF′ in Fig. 10. Thus if it is loaded beyond elastic limit and then unloaded a permanent strain (OF) is 
left in the specimen. This is called permanent set.

Stress-strain relation in aluminium and high strength steel. In these elastic materials  there is 
no clear cut yield point. The necking takes place at ultimate stress and eventually  the breaking point 
is lower than the ultimate point. The typical stress-strain diagram is shown in Fig. 11. The stress p 
at which if unloading is made there will be 0.2 per cent permanent set is known as 0.2 per cent 
proof stress and this point is treated as yield point for all practical purposes.
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Fig. 12. Stress-Strain RelationFig. 11. Stress-Strain Relation in 
Aluminium and High Strength Steel for Brittle Material

Stress-strain relation in brittle material. The typical stress-strain relation in a brittle material 
like cast iron, is shown in Fig. 12.

In these material, there is no appreciable change in rate of strain. There is no yield point and
no necking takes place. Ultimate point and breaking point are one and the same. The strain at failure
is very small.

Percentage elongation and percentage reduction in area. Percentage elongation and percentage
reduction in area are the two terms used to measure the ductility of material.

(a) Percentage Elongation: It is defined as the ratio of the final extension at rupture to original
length expressed, as percentage. Thus,

Percentage Elongation = 
L L

L

′ −
 × 100 ...(9)

where L – original length, L′– length at rupture.

The code specify that original length is to be five times the diameter and the portion
considered must include neck (whenever it occurs). Usually marking are made on tension
rod at every ‘2.5 d’ distance and after failure the portion in which necking takes place is
considered. In case of ductile material percentage elongation is 20 to 25.

(b) Percentage Reduction in Area: It is defined as the ratio of maximum changes in the cross-
sectional area to original cross-sectional area, expressed as percentage. Thus,

Percentage Reduction in Area = 
− ′AA

A
 × 100 ...(10)

where A–original cross-sectional area, A′–minimum cross-sectional area. In case of ductile
material, A′ is calculated after measuring the diameter at the neck. For this, the two broken
pieces of the specimen are to be kept joining each other properly. For steel, the percentage
reduction in area is 60 to 70.

Behaviour of Materials under Compression

As there is chance to bucking (laterally bending) of long specimen, for compression tests short
specimens are used. Hence, this test involves measurement of smaller changes in length. It results
into lesser accuracy. However precise measurements have shown the following results:

(a) In case of ductile materials stress-strain curve follows exactly same path as in tensile test
up to and even slightly beyond yield point. For larger values the curves diverge. There will
not be necking in case of compression tests.

(b) For most brittle materials ultimate compresive stress in compression is much larger than in
tension. It is because of flows and cracks present in brittle materials which weaken the
material in tension but will not affect the strength in compression.



NOMINAL STRESS AND TRUE STRESS

So far our discussion on direct stress is based on the value obtained by dividing the load by original 
cross-sectional area. That is the reason why the value of stress started dropping after neck is formed 
in mild steel (or any ductile material) as seen in Fig. 10. But actually as material is stressed its 
cross-sectional area changes. We should divide load by the actual cross-sectional area to get true 
stress in the material. To distinguish between the two values we introduce the terms nominal stress 
and true stress and define them as given below:

 Nominal Stress = 
Load

Original Cross-sectional Area
...(11a)

True Stress = 
Load

Actual Cross-sectional Area
...11b)

So far discussion was based on nominal stress. 
That is why after neck formation started (after ultimate 
stress), stress-strain curve started sloping down and the 
breaking took place at lower stress (nominal). If we 
consider true stress, it is increasing continuously as 
strain increases as shown in Fig. 13.
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Fig. 13. Nominal Stress-Strain Curve 
and True Stress-Strain Curve for Mild 

Steel.

FACTOR OF SAFETY

In practice it is not possible to design a mechanical component or structural component permitting 
stressing up to ultimate stress for the following reasons:

1. Reliability of material may not be 100 per cent. There may be small spots of flaws.
2. The resulting deformation may obstruct the functional performance of the component.

3. The loads taken by designer are only estimated loads. Occasionally there can be overloading.
Unexpected impact and temperature loadings may act in the lifetime of the member.

4. There are certain ideal conditions assumed in the analysis (like boundary conditions). Actually
ideal conditions will not be available and, therefore, the calculated stresses will not be 100
per cent real stresses.

Hence, the maximum stress to which any member is designed is much less than the ultimate
stress, and this stress is called Working Stress. The ratio of ultimate stress to working stress is called
factor of safety. Thus

Factor of Safety = Ultimate Stress

Working Stress
...(8.12)

In case of elastic materials, since excessive deformation create problems in the performance of
the member, working stress is taken as a factor of yield stress or that of a 0.2 proof stress (if yield
point do not exist).

Factor of safety for various materials depends up on their reliability. The following values are
commonly taken in practice:

1. For steel – 1.85

2. For concrete – 3
3. For timber – 4 to 6



HOOKE’S LAW

Robert Hooke, an English mathematician conducted several experiments and concluded that stress
is proportional to strain up to elastic limit. This is called Hooke’s law. Thus Hooke’s law is, up to
elastic limit

p ∝ e                                                                                           .......(13a) 
where p is stress and e is strain

Hence, p = Ee ...(13b) 
where E is the constant of proportionality of the material, known as modulus of elasticity or Young’s 
modulus, named after the English scientist Thomas Young (1773–1829).

However, present day sophisticated experiments have shown that for mild steel the Hooke’s law 
holds good up to the proportionality limit which is very close to the elastic limit. For other materials, 
Hooke’s law does not hold good. However, in the range of working stresses, assuming Hooke’s 
law to hold good, the relationship does not deviate considerably from actual behaviour. 
Accepting Hooke’s law to hold good, simplifies the analysis and design procedure 
considerably. Hence Hooke’s law is widely accepted. The analysis procedure accepting Hooke’s law 
is known as Linear Analysis and the design procedure is known as the working stress method.

EXTENSION/SHORTENING OF A BAR 

Consider the bars shown in Fig. 14
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From equation (8.6), Stress p = 
P

A

∆
L

From equation (8.7), Strain, e = 

From Hooke’s Law we have,

   E = 
Stress

Strain
= = =p

e

/P A

L

PL

A∆ / ∆

or ∆ = 
PL

AE
. ...(14)

Example 1. A circular rod of diameter 16 mm and 500 mm long is subjected to a tensile force 40 
kN. The modulus of elasticity for steel may be taken as 200 kN/mm2. Find stress, strain and elongation 
of the bar due to applied load.

Solution:  Load P = 40 kN = 40 × 1000 N
E = 200 kN/mm2 = 200 × 103 N/mm2

L = 500 mm
 Diameter of the rod d = 16 mm

Therefore, sectional area A = d 2π
4 4

=
π  × 162

= 201.06 mm2



Stress p = 
P

A
= 40 × 1000

201.06
 = 198.94 N/mm2

Strain e = 
p

E
=

×
198.94

200 103
= 0.0009947

 Elongation ∆ = 
PL

AE
= ××

× ×
4.0 1000 500

201.06 200 103  = 0.497 mm

Example 2. A Surveyor’s steel tape 30 m long has a cross-section of 15 mm × 0.75 mm. With this, 
line AB is measure as 150 m. If the force applied during measurement is 120 N more than the force 
applied at the time of calibration, what is the actual length of the line?

Take modulus of elasticity for steel as 200 kN/mm2.

Solution:  A = 15 × 0.75 = 11.25 mm2

 P = 120 N, L = 30 m = 30 × 1000 mm

 E = 200 kN/mm2 = 200 × 103 N/mm2

Elongation ∆ = 
PL

AE
= × ×

× ×
120 30 1000

11.25 200 103  = 1.600 mm

Hence, if measured length is 30 m.

Actual length is 30 m + 1.600 mm = 30.001600 m

∴ Actual length of line AB = 
150

30
 × 30.001600 = 150.008 m

Example 3. A hollow steel tube is to be used to carry an axial compressive load of 
160 kN. The yield stress for steel is 250 N/mm2. A factor of safety of 1.75 is to be used in the design. 
The following three class of tubes of external diameter 101.6 mm are available.

Class Thickness
3.65 mm

4.05 mm

Light

Medium
Heavy 4.85 mm

Which section do you recommend?

Solution: Yield stress = 250 N/mm2

Factor of safety = 1.75
Therefore, permissible stress

p = 
250

.1 75
 = 142.857 N/mm2

 Load P = 160 kN = 160 × 103 N

but
P

p = 
A

i.e. 142.857 = 160 × 103

A

160 10× 3

∴  A =  = 1120 mm2

142.857

For hollow section of outer diameter ‘D’ and inner diameter ‘d’

 A = 
π
4

(D2 – d2) = 1120

π
4

(101.62 – d2) = 1120



d2 = 8896.53 ∴ d = 94.32 mm

∴ t = 
−D d = −
2

101.6 94.32

2
 = 3.63 mm

Hence, use of light section is recommended.
Example 4. A specimen of steel 20 mm diameter with a gauge length of 200 mm is tested to 
destruction. It has an extension of 0.25 mm under a load of 80 kN and the load at elastic limit is 
102 kN. The maximum load is 130 kN.

The total extension at fracture is 56 mm and diameter at neck is 15 mm. Find

(i) The stress at elastic limit.

(ii) Young’s modulus.

(iii) Percentage elongation.

(iv) Percentage reduction in area.

(v) Ultimate tensile stress.

Solution:    Diameter d = 20 mm

  Area A = πd 2

 = 314.16 mm2

(i) Stress at elastic limit = 

4

Load at elastic limit

Area

= 
102 10

314.16

× 3

 = 324.675 N/mm2

(ii) Young’s modulus E = 
Stress

Strain
within elastic limit

= /P A

L/

80 × 10 /314.16

0.25/200

3

∆
=

 = 203718 N/mm2

(iii) Percentage elongation = Final extension

Original length

 = 
56

200
 × 100 = 28

(iv) Percentage reduction in area

Initial area − Final area
= 

Initial area
 × 100

= 

π − ×π

π
4

20
4

15

4
20

2 2

2

×

×
 × 100 = 43.75

(v) Ultimate Tensile Stress = 
Ultimate Load

Area

= 130 × 103

314.16
 = 413.80 N/mm2.



BARS WITH CROSS-SECTIONS VARYING IN STEPS

A typical bar with cross-sections varying in steps and subjected to axial load is as shown in Fig.
15(a). Let the length of three portions be L1, L2 and L3 and the respective cross-sectional areas of 
the portion be A1, A2, A3 and E be the Young’s modulus of the material and P be the applied axial 
load.

Figure 15(b) shows the forces acting on the cross-sections of the three portions. It is obvious 
that to maintain equilibrium the load acting on each portion is P only. Hence stress, strain and 
extension of each of these portions are as listed below:

P 1 2 3
A1

A2
A3

P
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(a)

Section Through 1 Section Through 2 Section Through 3

(b)

Fig.15. Typical Bar with Cross-section Varying in Step

Portion Stress Strain Extension

1 p1 = 
P
A1

e1 = 
p
E

P

1A E
1 = ∆1 = PL

1A E
1

2 p2 = 
P

A2
e2 = 

p
E

P

2A E
2 = ∆2 =

PL

2A E
2

3 p3 = P e3 = 
p P

A E
3

3
= ∆3 =

PL
A E

3

3A3 E

Hence total change in length of the bar

∆ = ∆1 + ∆2 + ∆3 = 
PL

A E

PL

A E

PL

A E
1

1

2

2

3

3

++ ...(15)

Example 5. The bar shown in Fig. 16 is tested in universal testing machine. It is observed that at 
a load of 40 kN the total extension of the bar is 0.280 mm. Determine the Young’s modulus of 
the material.

PP d1 = 25 mm d3 = 25 mmd2 = 20 mm

250250 mmmm150150 mmmm 150150 mmmm

Fig. 16

Solution: Extension of portion 1, PL

A E E

1

1

3

2

40 10 150

4
25

= × ×
π ×

Extension of portion 2,
PL

A E E

2

2

3

2

40 10 250

4
20

= × ×
π ×



Extension of portion 3, PL

A E E

3

3

3

2

40 10 150

4
25

= × ×
π ×

Total extension = 
40 4 150

625

250

400

150

625

× 103

× + +�
�
�

�
�
�E π

 0.280 = 
40 × 103 4× ×

E Eπ
1.112

E = 200990 N/mm2

BARS WITH CONTINUOUSLY VARYING CROSS-SECTIONS

When the cross-section varies continuously, an elemental length of the bar should be considered and 
general expression for elongation of the elemental length derived. Then the general expression should 
be integrated over entire length to get total extension. 

Example 8. A bar of uniform thickness ‘t’ tapers uniformly from a width of b1 at one end to b2 at 
other end in a length ‘L’ as shown in Fig. 18. Find the expression for the change in length of the 
bar when subjected to an axial force P.
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Solution: Consider an elemental length dx at a distance x from larger end. Rate of change of breadth

is 
−b b

L
1 2 .

Hence, width at section x is  b = b1 – 
b

L

−1 2b
 x = b1 – kx

where k = 
b b

L

−1 2

∴ Cross-section area of the element = A = t(b1 – kx)
Since force acting at all sections is P only,

Extension of element = 
Pdx

AE
[where length = dx]

 = 
Pdx

−b k( )x tE1

Total extension of the bar  = 
0 1 0 1

L LPdx

−b k )x tE

P

tE

dx

( =  ( −b kx)

 = 
P

tE �	 − k
−b kx

L

1

0

� 1 

��

�
�
�

�
�
�

log ( )

  = 
P

tEk

−b b

L
x

L

−− 

�

�
��

�
��

log �
�
b1

21

0



 = 
P

tEk
[– log b2 + log b1] = 

P

tEk
 log 

b

b
1

2

 = 
PL

tE(b − b )
log

b
b1 2

1

2

. ...(16)

A tapering rod has diameter d1 at one end and it tapers uniformly to a diameter d2 at the other 
end in a length L as shown in Fig. 20. If modulus of elasticity of the material is E, find its 
change in length when subjected to an axial force P.

Cross-section
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Fig. 20 

Solution: Change in diameter in length L is d1 – d2

∴ Rate of change of diameter, k = 
d d

L

−1 2

Consider an elemental length of bar dx at a distance x from larger end. The diameter of the bar
at this section is

  d = d1 – kx.

Cross-sectional area A = 
d2π
4 4

= (d
π

1 – kx)2

∴ Extension of the element = 
P dx

d k )x E
π
4 1( − 2

Extension of the entire bar  ∆ = 
0

1
2

4

L P dx

kx) E(d −
 π

= 
4

0 1
2

P dx

πE  −d k( )x

L

= 
4 1

1 0

P
L

πEk �	 d kx−
� 


��

= 
4 1 1

21 12

P

L
dπE d − d( ) �	 d

−
� 


��
, since d1 – kL = d2

  = ∆ 4

21

1 2

21

PL

d − d

−d d

d dπE( )

( )
×  = 

4PL
Ed d1 2π

. ...(17)



 Example 6. A steel flat of thickness 10 mm tapers uniformly from 60 mm at one end to 40 
mm at other end in a length of 600 mm. If the bar is subjected to a load of 80 kN, find its 
extension. Take E = 2 × 105 MPa. What is the percentage error if average area is used for 
calculating extension?

Solution: Now,  b1 = 60 mm b2 = 40 mmt = 10 mm
 L = 600 mm   P = 80 kN = 80000 N

Now, 1 MPa = 1 N/mm2

Hence E = 2 × 105 N/mm2

Extension of the tapering bar of rectangular section

∆∆∆∆∆ = 
PL

tE b − b( )1 2

 log 
b

b
1

2

= 
80000 600

10 2 60105

×
× × − 40( )

 log
60

40

= 0.4865 mm
If averages cross-section is considered instead of tapering cross-section, extension is given by

∆ = 
PL

avA E

Now Aav = 
60 10 40 10

2

× + ×
 = 500 mm2

∆ = 
80000 600

500 105

×
2× ×

 = 0.480 mm

∴ Percentage error = 
00

0

.4865 .48

.4865

−
 × 100

= 1.348
SHEAR STRESS

Figure 22 shows a bar subject to direct shearing 
force i.e., the force parallel to the cross-section of 
bar. The section of a rivet/bolt subject to direct shear 
is shown in Fig. 23. Let Q be the shearing force 
and q the shearing stress acting on the section. Then, 
with usual assumptions that stresses are uniform we 
get,

Q

P

R

Q

Fig. 22. Direct Shear Force on a 
Section

Q

Q

R
Q

Q

Q

Fig. 23. Rivet in Direct Shear

For equilibrium

 R = ∫ q dA = q ∫ dA = qA

Q = R = qA

i.e., q = 
Q

...(18)
A

Thus, the direct stress is equal to shearing force per unit area.



POISSON’S RATIO

When a material undergoes changes in length, it undergoes changes of opposite nature in lateral 
directions. For example, if a bar is subjected to direct tension in its axial direction it elongates and 
at the same time its sides contract (Fig. 27).

�L

Fig. 27. Changes in Axial and Lateral Directions

If we define the ratio of change in axial direction to original length as linear strain and change
in lateral direction to the original lateral dimension as lateral strain, it is found that within elastic limit
there is a constant ratio between lateral strain and linear strain. This constant ratio is called
Poisson’s ratio. Thus,

Poisson’s ratio = 
Lateral strain

Linear strain
...(19)

It is denoted by 
1

m
, or µ. For most of metals its value is between 0.25 to 0.33. Its value for steel

is 0.3 and for concrete 0.15.

VOLUMETRIC STRAIN

When a member is subjected to stresses, it undergoes deformation in all directions. Hence, there will
be change in volume. The ratio of the change in volume to original volume is called volumetric
strain.

Thus ev = 
δV

V
...(20)

where eV = Volumetric strain

δV = Change in volume
 V = Original volume

It can be shown that volumetric strain is sum of strains in three mutually perpendicular directions.
i.e., ev = ex + ey + ez

For example consider a bar of length L, breadth b and depth d as shown in Fig. 28.

d

bb
LL

z
y

x

Fig. 28

Now, V = Lbd

Since volume is function of L, b and d.

δV = δL bd + L δb d + Lb δd

δV

V
 = 

δv

Lbd

eV = 
Lδ δb+ + δ
L b

d

d
eV = ex + ey +  e z

Now, consider a circular rod of length L and diameter ‘d’ as shown in Fig. 29.



z
y

x

LL

dd

Fig. 29

Volume of the bar    V = 
π
4

 d2L

∴ V = 
πδ
4

2dδd L + 
π
4

 d2 δL (since v is function of d and L).

∴
δ

π
V

d L
4

2
 = 2

δd

d
 + 

δL

L

 eV = ex + ey + ez; since ey = ez = 
δd

d

In general for any shape volumetric strain may be taken as sum of strains in three mutually
perpendicular directions.

ELASTIC CONSTANTS

Modulus of elasticity, modulus of rigidity and bulk modulus are the three elastic constants. Modulus
of elasticity (Young’s Modulus) ‘E’ has been already defined as the ratio of linear stress to linear
strain within elastic limit. Rigidity modulus and Bulk modulus are defined in this article.

Modulus of Rigidity: It is defined as the ratio of shearing stress to shearing strain within elastic
limit and is usually denoted by letter G or N. Thus

 G = 
q

φ
...(21)

where G = Modulus of rigidity
 q = Shearing stress

and φ = Shearing strain
Bulk Modulus: When a body is subjected to identical stresses p in three mutually perpendicular 

directions, (Fig. 30), the body undergoes uniform changes in three directions without undergoing 
distortion of shape. The ratio of change in volume to original volume has been defined as volumetric 
strain (ev). Then the bulk modulus, K is defined as

K = 
p

ev

where   p = identical pressure in three mutually perpendicular directions

 ev = 
∆v

v
, Volumetric strain

∆v = Change in volume
 v = Original volume

Thus bulk modulus may be defined as the ratio of identical pressure ‘p’ acting in three  mutually
perpendicular directions to corresponding volumetric strain.

pp

p

p p

p

p

p

p

p p

p

(a) (b)

Fig. 30



Figure 30 shows a body subjected to identical compressive pressure ‘p’ in three mutually 
perpendicular directions. Since hydrostatic pressure, the pressure exerted by a liquid on a body within 
it, has this nature of stress, such a pressure ‘p’ is called as hydrostatic pressure.

RELATIONSHIP BETWEEN MODULUS OF ELASTICITY
AND MODULUS OF RIGIDITY

Consider a square element ABCD of sides ‘a’ subjected to pure shear ‘q’
as shown in Fig. 8.31. AEC′D shown is the deformed shape due to shear
q. Drop perpendicular BF to diagonal DE. Let φ be the shear strain and
G modulus of rigidity.

A
j

C¢ C

aa
q

D
aa

qq
E B

F¢
q

Fig. 31

Now, strain in diagonal   BD = 
DE − DF

DF

 = 
EF

DB

 = 
EF

AB 2

Since angle of deformation is very small we can assume ∠BEF = 45°, hence EF = BE cos 45°

∴ Strain in diagonal BD = 
BD

BE

AB
=EF cos 45°

2

 = 
a

a

tan φ cos 45

2

°

 = 
1

2

1

2
tan =φ φ (Since φ is very small)

= 
1

2
× q

G
, since φ = 

q

G
...(1)

Now, we know that the above pure shear gives rise to axial tensile stress q in the diagonal
direction of DB and axial compression q at right angles to it. These two stresses cause tensile strain
along the diagonal DB.

Tensile strain along the diagonal DB = 
q

E E E

q q
+ = 1µ µ+( ) ...(2)

From equations (1) and (2), we get

1

2
× =q q

1 + µ( )
G E

E = 2G(1 + µ) ...(22)

RELATIONSHIP BETWEEN MODULUS OF ELASTICITY AND BULK MODULUS

Consider a cubic element subjected to stresses p 
in the three mutually perpendicular direction x, y, 
z as shown in Fig. 32.

Now the stress p in x direction causes tensile

strain 
p
E

 in x direction while the stress p in y and

z direction cause compressive strains µ 
p

E
 in x

direction.

Hence, ex = 
p

E

p

E

p

E
− −µ µ

  = 
p

E
1 2− µ( )

Similarly ey = 
p

E
1 2− µ( )

Fig. 32
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E

p
ez = 1 2− µ( ) ...(1)

∴ Volumetric strain ev = ex + ey + ez = 
3p

E
1 2− µ( )

From definition, bulk modulus K is given by

p p

E

K = =
3pev

1 − 2µ( )

or  E = 3K(1 – µ) ...(2)

Relationship between EGK:

We know  E = 2G(1 + µ) ...(a)

and  E = 3K(1 – 2µ) ...(b)

By eliminating µ between the above two equations we can get the relationship between E, G,
K, free from the term µ.

E
From equation (a)  µ = − 1

2G
Substituting it in equation (b), we get

E = K
�
�3 1 − 2

2
1

E

G
−�

�
�
��
�

	

= K�3 1 2
E

G� �
− + �  = K�3 3

E

G
−

�
�
�

 = 9K – 
3KE

G

∴ E
K

G
1

3+�
�

�
�  = 9K

or  E
+ 3G K

G
�
�

�
�  = 9K ...(c)

or    =E  
9KG

+ 3G K
...(23a)

Equation (c) may be expressed as

+G K39

E KG
=



Example 7. A circular rod of 25 mm diameter and 500 mm long is subjected to a tensile force of 
60 kN. Determine modulus of rigidity, bulk modulus and change in volume if Poisson’s ratio = 
0.3 and Young’s modulus E = 2 × 105 N/mm2.
Solution:  From the relationship

  E = 2G(1 + µ) = 3k(1 – 2µ)

We get,   G = E

(2 1

2 105

+ µ) 2 1( + 0 3. )
= ×  = 0.7692 × 105 N/mm2

and  K = 
E

3
2 105

1 + 2µ( ) 3(1 2− × 0 3. )
= ×

 = 1.667 × 105 N/mm2

Longitudinal stress = 
P

A
= ×

×

60 10

4
25

3

2π  = 122.23 N/mm2

Linear strain = 
Stress

E
=

× 5
122.23

2 10
 = 61.115 × 10–5

Lateral strain = ey = – µex and ez = – µex

  Volumetric strain ev = ex + ey + ez

= ex(1 – 2µ)

= 61.115 × 10–5 (1 – 2 × 0.3)
= 24.446 × 10–5

but
Change in volume

v

 = ev

∴   Change in volume = ev × v

= 24.446 × 10–5 × 
π
4

 × (252) × 500

= 60 mm3

Example 8. A 400 mm long bar has rectangular cross-section 10 mm × 30 mm. This bar is 
subjected to

(i) 15 kN tensile force on 10 mm × 30 mm faces,

(ii) 80 kN compressive force on 10 mm × 400 mm faces, and

(iii) 180 kN tensile force on 30 mm × 400 mm faces.

Find the change in volume if E = 2 × 105 N/mm2 and µ = 0.3.

400400

8080

180180 kNkN 3030

1515 kNkN

1010

8080 kNkN

180180 kNkN

1515 kNkN
y

z
x

Fig 33



Example 9. In a laboratory, tensile test is conducted and Young’s modulus of the material is 
found to be 2.1 × 105 N/mm2. On the same material torsion test is conducted and modulus of rigidity 
is found to be 0.78 × 105 N/mm2. Determine Poisson’s Ratio and bulk modulus of the material.

[Note: This is usual way of finding material properties in the laboratory].

Solution: E = 2.1 × 105 N/mm2

 G = 0.78 × 105 N/mm2

Using relation E = 2G(1 + µ)

we get 2.1 × 105 = 2 × 0.78 × 105 (1 + µ)

1.346 = 1 + µ
or  µµµµµ = 0.346

From relation  E = 3K(1 – 2µ)

we get 2.1 × 105 = 3 × K(1 – 2 × 0.346)

K = 2.275 × 105 N/mm2

Example 10. A material has modulus of rigidity equal to 0.4 × 105 N/mm2 and bulk modulus equal 
to 0.8 × 105 N/mm2. Find its Young’s Modulus and Poisson’s Ratio.

Solution:  G = 0.4 × 105 N/mm2

Using the relation E = 
9

3

K = 0.8 × 105 N/mm2

GK

+K G

 E = 
9 0× × 10 0× .8 × 10

3 .0 8 10 10

55

55

.4

× × + 0 ×.4

E = 1.0286 × 105 N

From the relation

we get

 E = 2G(1 + µ)

1.0286 × 105 = 2 × 0.4 × 105(1 + µ)

1.2857 = 1 + µ
or µ µ µ µ µ = 0.2857



COMPOSITE/COMPOUND BARS

Bars made up of two or more materials are called composite/compound bars. They may have same 
length or different lengths as shown in Fig. 34. The ends of different materials of the bar are held 
together under loaded conditions.

P P Rigid
connection

Material 2Material 1

Rigid support
P

Material 2Material 1

Fig. 34

Consider a member with two materials. Let the load shared by material 1 be P1 and that by
material 2 be P2. Then

(i) From equation of equilibrium of the forces, we get

P = P1 + P2 ...24a)

(ii) Since the ends are held securely, we get

∆l1 = ∆l2

where ∆l1 and ∆l2 are the extension of the bars of material 1 and 2 respectively

i.e.
P L

A E

P L

A E
1 1

1 1

2 2

2 2

= ...24b)

Using equations 8.24(a) and (b), P1 and P2 can be found uniquely. Then extension of the system

can be found using the relation ∆l = 
P L

A E
1 1

1 1

or ∆l = 
P L

A E
2 2

2 2

since ∆l = ∆l1 = ∆l2.

The procedure of the analysis of compound bars is illustrated with the examples below:

Example 11. A compound bar of length 600 mm consists of a strip of aluminium 40 mm wide and 
20 mm thick and a strip of steel 60 mm wide × 15 mm thick rigidly joined at the ends. If elastic 
modulus of aluminium and steel are 1 × 105 N/mm2 and 2 × 105 N/mm2, determine the stresses 
developed in each material and the extension of the compound bar when axial tensile force of 60 
kN acts.

Solution: The compound bar is shown in the figure 8.36.

Data available is
 L = 600 mm
 P = 60 kN = 60 × 1000 N

Aa

As

   = 40 × 20 = 800 mm2

 = 60 × 15 = 900  mm2

Ea = 1 × 105 N/mm2, Es = 2 × 105 N/mm2.



Let the load shared by aluminium strip be Pa and that shared by
steel be Ps. Then from equilibrium condition

Pa + Ps = 60 × 1000 ...(1)

From compatibility condition, we have
∆a = ∆s

P L

A E

P L

A E
a

a a

s

s s

=

i.e.   
P Pa s×

× ×
=

×
× ×

600

800 1 10

600

900 2 105 5

 Ps = 2.25 Pa ...(2)
Substituting  it in eqn. (1), we get

 Pa + 2.25 Pa = 60 × 1000

i.e.  Pa = 18462 N.

∴ Ps = 2.25 × 18462 = 41538 N.

∴ Stress in aluminium strip = 
P

A
a

a

= 18462

800

 = 23.08 N/mm2

Stress in steel strip = 
P

A
s

s

= 41538

900
 = 46.15 N/mm2

Extension of the compound bar = 
P L

A E
a

a a

= ×
× ×

18462 600

800 1 105

∆l = 0.138 mm.

Fig. 35

600 mm600 mm
Steel

Aluminium

60 kN

Example 12. A compound bar consists of a circular rod of steel of 25 
mm diameter rigidly fixed into a copper tube of internal diameter 25 mm 
and external diameter 40 mm as shown in Fig. 36. If the compound bar is 
subjected to a load of 120 kN, find the stresses developed in the two 
materials.

Copper tube

Steel rod
Fig. 36

...(1) Ps + Pc = 120 × 1000

where Ps is the load shared by steel rod and Pc is the load shared by the copper tube.
From compatibility condition, we have

∆s = ∆c

sP L

A E
cP L

A Es s c c

=

sP Pc

490 87 2× × 10 765. .76 1 2× × 105 5.
=

...(2)∴ Ps = 1.068 Pc

From eqns. (1) and (2), we get



1.068 Pc + Pc = 120 × 1000

Pc = 
120 1000

2.068

×
 = 58027 N

  Ps = 1.068 Pc = 61973 N

∴

∴

∴ Stress in copper = 
58027

9765.76
 = 75.78 N/mm2

Stress in steel = 
61973

490.87
 =  126.25 N/mm2

Example 13. Three pillars, two of aluminium and one of steel support a rigid platform of 250 kN 
as shown in Fig. 38. If area of each aluminium pillar is 1200 mm2 and that of steel pillar is 1000 
mm2,  find the stresses developed in each pillar.

Take Es = 2 × 105 N/mm2 and Ea = 1 × 106 N/mm2.

Solution: Let force shared by each aluminium pillar be Pa and that
shared by steel pillar be Ps .

∴ The forces in vertical direction = 0 →
Pa + Ps + Pa = 250

...(1) 2Pa + Ps = 250

From compatibility condition, we get

 ∆s = ∆a Fig. 38

250 kN

S
te

el A
lu

m
in

iu
m

A
lu

m
in

iu
m

24
0 

m
m

16
0 

m
m

P L

A E

P L

A E
s s

s s

a a

a a

=

×sP Pa

2× ×
= ×

× ×
240

1000 10

160

1200 15 105

...(2)∴  Ps = 1.111 Pa

From eqns. (1) and (2), we get

 Pa (2 + 1.111) = 250

Pa = 80.36 kN∴
Hence from eqn. (1),

Ps = 250 – 2 × 80.36 = 89.28 kN

∴ Stresses developed are

A
σs = 

Ps

s

= 89.28 × 1000

1000
 = 89.28 N/mm2

σa = 
80 1000

1200

.36 ×
 = 66.97 N/mm2

Example 14. A steel bolt of 20 mm diameter passes centrally through a copper tube of internal 
diameter 28 mm and external diameter 40 mm. The length of whole assembly is 600 mm. After tight 
fitting of the assembly, the nut is over tightened by quarter of a turn. What are the stresses introduced

in the bolt and tube, if pitch of nut is 2 mm? Take Es = 2 × 105 N/mm2 and Ec = 1.2 × 105 N/mm2.

Copper tube

Steel bolt

600 mm

Copper tube

Steel bolt

(a)
(b)

Fig. 39



Solution: Figure 8.40 shows the assembly. Let the force shared by bolt be Ps and that by tube be
Pc. Since there is no external force, static equilibrium condition gives

Ps + Pc = 0 or Ps = – Pc

i.e., the two forces are equal in magnitude but opposite in nature. Obviously bolt is in tension and
tube is in compression.

Let the magnitude of force be P. Due to quarter turn of the nut, the nut advances by 
1

4
 × pitch

= 
1

4
 × 2 = 0.5 mm.

[Note. Pitch means advancement of nut in one full turn]

During this process bolt is extended and copper tube is shortened due to force P developed. Let
∆s be extension of bolt and ∆c shortening of copper tube. Final position of assembly be ∆, then

 ∆s + ∆c = ∆

i.e.
A E

P Ls s P L

A Es s

c c

c c

+  = 0.5

×P P

× × ×
+ ×600

20 2 10

600
2 5 ( / )4 4( 0π 2 28− ×)2 1.2 1× 05π( / 4)

 = 0.5

P ×
× ×

+
�

10 �
� �

�

600

4 5π( / )

1

20 2

1

(40 282 )− × 12 .22

�
 = 0.5

∴  P = 28816.8 N

∴ ps = 
A

Ps

s

=
×

28816.8

4 2 20π( / )
 = 91.72 N/mm2

pc = 
P

A
c

c

=
−

28816.8

402 282π( / 4) ( )
 = 44.96 N/mm2



THERMAL STRESSES

Every material expands when temperature rises and contracts when temperature falls. It is established
experimentally that the change in length ∆ is directly proportional to the length of the member L and
change in temperature t. Thus

 ∆ ∝ tL

= α tL ...(8.25)
The constant of proportionality α is called coefficient of thermal expansion and is defined as

change in unit length of material due to unit change in temperature. Table 8.1 shows coefficient of
thermal expansion for some of the commonly used engineering materials:

Table 1

Material Coefficient of thermal
expansion

Steel 12 × 10–6/°C

Copper 17.5 × 10–6/°C

Stainless steel 18 × 10–6/°C

Brass, Bronze 19 × 10–6/°C

Aluminium 23 × 10–6/°C

If the expansion of the member is freely permitted, as shown in Fig. 8.41, no temperature
stresses are induced in the material.

LL

ααtLtL

Fig. 40 Free Expansion Permitted

If the free expansion is prevented fully or partially the stresses are induced in the bar, by the 
support forces. Referring to Fig. 41,

LL

ααtLtL

(a)

(b)

(c)

R P

Fig. 41

If free expansion is permitted the bar would have expanded by
∆ = α tL

Since support is not permitting it, the support force P develops to keep it at the original position.
Magnitude of this force is such that contraction is equal to free expansion, i.e.

PL
 = α tL

AE

or  p = E α t. ...(26)

which is the temperature stress. It is compressive in nature in this case.



Consider the case shown in Fig. 8.43 in which free expansion is prevented partially.

LL

αtL

R = P P

δ

δ

Fig. 42

In this case free expansion = α tL

Expansion prevented ∆ = α tL – δ

The expansion is prevented by developing compressive force P at supports

∴
PL

AE
 = ∆ = α tL – δ. ...(27)

Example 15. A steel rail is 12 m long and is laid at a temperature of 18°C. The maximum 
temperature expected is 40°C.

(i) Estimate the minimum gap between two rails to be left so that the temperature stresses do
not develop.

(ii) Calculate the temperature stresses developed in the rails, if:
(a) No expansion joint is provided.

(b) If a 1.5 mm gap is provided for expansion.

(iii) If the stress developed is 20 N/mm2, what is the gap provided between the rails?

Take E = 2 × 105 N/mm2 and α = 12 × 10–6/°C.

Solution:
(i) The free expansion of the rails

= α tL = 12 × 10–6 × (40 – 18) × 12.0 × 1000

= 3.168 mm
∴ Provide a minimum gap of 3.168 mm between the rails, so that temperature stresses

do not develop.

(ii) (a) If no expansion joint is provided, free expansion prevented is equal to 3.168 mm.
i.e.

∴

 ∆ = 3.168 mm
PL

AE
 = 3.168

∴ p = 
P

A
= × ×

×
.3168 2 10

12 1000

5

 = 52.8 N/mm2

(b) If a gap of 1.5 mm is provided, free expansion prevented ∆ = α tL – δ = 3.168 – 1.5 =
1.668 mm.

∴ The compressive force developed is given by 
PL

AE
 = 1.668

or p = 
P

A
= × ×1.668 2 10

12 1000

5

 = 27.8 N/mm2

×



(iii) If the stress developed is 20 N/mm2, then p = 
P

A
 = 20

If δ is the gap,  ∆ = α tL – δ
PL∴
AE

 = 3.168 – δ

i.e. 20 × 
12 1000

2 1 50

×
×

∴

 = 3.168 – δ

 δδδδδ = 3.168 – 1.20 = 1.968 mm

Example 16. The composite bar shown in Fig. 43 is rigidly fixed at the ends A and B. Determine 
the reaction developed at ends when the temperature is raised by 18°C. Given

Ea = 70 kN/mm2

Es = 200 kN/mm2

αa = 11 × 10–6/°C

αs = 12 × 10–6/°C

Aluminium

1.5 m1.5 m 3.0 m3.0 m

Aa = 600 mm
2

Steel

As = 400 mm
2

(a)

(b)

Fig.43

Solution: Free expansion = αa tLa + αstLs

 = 11 × 10–6 × 18 × 1500 + 12 × 10–6 × 18 × 3000
 = 0.945 mm

Since this is prevented

 ∆ = 0.945 mm.
Ea = 70 kN/mm2 = 70000 N/mm2 ;

Es = 200 kN/mm2 = 200 × 1000 N/mm2

If P is the support reaction,

 ∆ = 
PL

A E

PL

A E
a

a a

s

s s

+

i.e.  0.945 = P
1500

600 70000

3000

400 200 1000×
+

××
�
�
�

�
�
�

0.945 = 73.214 × 10–6 P

or P = 12907.3 N



THERMAL STRESSES IN COMPOUND BARS

When temperature rises the two materials of the compound bar experience different free expansion.
Since they are prevented from seperating, the two bars will have common position. This is possible
only by extension of the bar which has less free expansion and contraction of the bar which has more
free expansion. Thus one bar develops tensile force and another develops the compressive force. In
this article we are interested to find such stresses.

Consider the compound bar shown in Fig. 45(a). Let α1, α2 be coefficient of thermal expansion 
and E1, E2 be moduli of elasticity of the two materials respectively. If rise in temperature is ‘t’,

Free expansion of bar 1 = α1 tL

Free expansion of bar 2 = α2 tL

Let α1 > α2. Hence the position of the two bars, if the free expansions are permitted are at AA and
BB as shown in Fig. 

2d tL

B

B

�2

C

C

P2

�1

A

A

P1

Bar -2

Bar-1

��11tLtL

Bar -2

Bar-1

Fig. 45

Since the two bars are rigidly connected at the ends, the final position of the end will be
somewhere between AA and BB, say at CC. It means Bar–1 will experience compressive force P1

which contracts it by ∆1 and Bar–2 experience tensile force P2 which will expand it by ∆2.

The equilibrium of horizontal forces gives,

P1 = Pc, say P

From the Fig. 8.46 (b), it is clear,

  α1 tL – ∆1 = α2 tL + ∆2

∴  ∆1 + ∆2 = α1 tL – α2 tL = (α1 – α2) tL.

If the cross-sectional areas of the bars are A1 and A2, we get

A E

PL PL

11 A E2 2

+  = (α1 – α2) t L ...(8.28)

From the above equation force P can be found and hence the stresses P1 and P2 can be determined.



Example 17. A bar of brass 20 mm is enclosed in a steel tube of 40 mm external diameter and 
20 mm internal diameter. The bar and the tubes are initially 1.2 m long and are rigidly fastened at 
both ends using 20 mm diameter pins. If the temperature is raised by 60°C, find the stresses induced 
in the bar, tube and pins.

Given: Es = 2 × 105 N/mm2

Eb = 1 × 105 N/mm2

αs = 11.6 × 10–6/°C

αb = 18.7 × 10–6/°C.

Solution:

Pin
�stL

B

B

C

C

�s

�b

A

A

1200 mm1200 mm

�b bt�b bt

2020 4040

Steel tube

Brass rod

Fig. 46

t = 60° Es = 2 × 105 N/mm2 Eb = 1 × 105 N/mm2

αs = 11.6 × 10–6/°C αb = 18.7 ×10–6/°C

 As = 
π
4

(402 – 202) Ab = π
4

 × 202

= 942.48 mm2 = 314.16 mm2

Since free expansion of brass (αb tL) is more than free expansion of steel (αs tL), compressive 
force Pb develops in brass and tensile force Ps develops in steel to keep the final position at CC 
(Ref: Fig. 46).

Horizontal equilibrium condition gives Pb = Ps, say P. From the figure, it is clear that
∆s + ∆b = αb tL – αstL = (αb – αs)tL.

where ∆s and ∆b are the changes in length of steels and brass bars.

∴ PL

A E

PL

A Es s b b

+  = (18.7 – 11.6) × 10–6 × 60 × 1200.

P × 1200 
1

942.48 2 10

1

314.16 1 105 5× ×
+

× ×
�

�
�

�

�
�  = 7.1 × 10–6 × 60 × 1200

∴  P = 11471.3 N

∴ Stress in steel = 
P

As

= 11471.3

942.48
 = 12.17 N/mm2

and Stress in brass = 
P

Ab

= 11471.3

314.16
 = 36.51 N/mm2

The pin resist the force P at the two cross-sections at junction of two bars.

∴ Shear stress in pin = 
P

2 × Area of pin

= 
11471.3

2 π /× ×4 220
 = 18.26 N/mm2



IMPORTANT FORMULAE

1. If stress is uniform

p = 
P

A

2. (i) Linear strain =
Change in length

Original length

(ii) Lateral strain = 
Change in lateral dimension

Original lateral dimension

3. Poisson’s ratio =
Lateral strain

Linear strain
, within elastic limit.

4. Percentage elongation =
′ −L L

L
 × 100.

5. Percentage reduction in area =
−A A

A

′
 × 100.

6. Nominal stress =
Load

Original cross-sectional area
.

7. True stress =
Load

Actual cross-sectional area
.

8. Factor of safety =
Ultimate stress

Working stress

  However in case of steel, = 
Yield stress

Working stress
.

9. Hooke’s Law, p = Ee.

10. Extension/shortening of bar =
PL

AE
.

11. Extension of flat bar with linearly varying width and constant thickness =
PL

tE b − b( )1 2

 log 
b

b
1

2

.

12. Extension of linearly tapering rod =
4

421 21

PL

E d d

PL

/π d d ) Eπ
=

(
.

13. Direct shear stress =
Q

A
.

14. Volumetric strain ev =
δV

V
 = ex + ey + ez.

15. E = 2G (1 + µ) = 3K (1 – 2µ)

or
9 13

E G K
= + .

16. Extension due to rise in temperature:
 ∆ = α tL

17. Thermal force, P is given by

PL
 = extension prevented.

AE



Tutorial questions

1. Draw stress strain diagram for ductile materials and indicate all salient features on it. Explain the various
mechanical properties can be estimated from that diagram.

2. Derive the relations between E,G,K

3. Derive the expression for the elongation for the circular tapered bar

4. Two parallel walls 6m apart are stayed together by a 25 mm diameter steel rod at

 800C passing through washers and nuts at ends. If the rod cools down to 220C, 
calculate the pull induced in the rod, if 

  (a) the walls do not yield and 

 (b) the total yield at ends is 1.5 mm 

E steel = 2×105N/mm2, α steel = 11×10−6 per0C. 

5. A)A metallic rod of 1 cm diameter, when tested under an axial pull of 10 kN was 

 found to reduce its diameter by 0.0003 cm. The modulus of rigidity for the 

 rod is 51 KN/mm2. Find the Poisson’s ratio, modulus of elasticity and Bulk Modulus. 

b) An aluminium bar 60 mm diameter when subjected to an axial tensile load 100

kN elongates 0.20 mm in a gage length 300 mm and the diameter is decreased 
by 0.012 mm. Calculate the modulus of elasticity and the Poisson’s ratio of 

the material. 

6. A specimen of diameter 13 mm and gauge length 50 mm was tested under tension. At 20 kN load, the

extension was observed to be 0.0315 mm. Yielding occurred at a load of 35 kN and the ultimate load was

60 KN. The final gauge length at fracture was 70 mm. Calculate young’s modulus, yield stress, ultimate

strength and percentage elongation.



Assignment Questions 

1. Determine the young’s modulus and Possion’s ratio of a metallic bar of length 25cm breadth 3cm depth 2cm

when the beam is subjected to an axial compressive load 240KN. The decrease in length is given by 0.05cm and 

increase in breadth 0.002 

2. Write the differences among   Gradual, Sudden, Impact and Shock  loadings with the help of expressions

3. A steel rod and two copper rods together support a load of 370 kN as shown in fig. The cross sectional area of
steel road is 2500 mm2 and of each copper road is 1600 mm2. Find the stresses in the roads. Take E for steel is 

2x105 N/mm2 and for copper is 1x105 N/mm2

4. A vertical tie, fixed rigidly at the top end consist of a steel rod 2.5 m long and 20 mm diameter encased
throughout in a brass tube 20 mm internal diameter and 30 mm external diameter. The rod and the casing are 

fixed together at both ends. The compound rod is loaded in tension by a force of 10 kN. Calculate the maximum 

stress in steel and brass. Take Es=2x105N/mm2 and Eb=1x105N/mm2

5. A steel tube 50mm in external diamerter and 3mm thick encloses centrally a solid copper bar of 35mm

diameter. The bar and the tube are rigidly connected together at the ends at a temperature of 20 0C. Find the stress 

in each metal when heated to 1700C. Also find the increase in length, if the original length of the assembly is 
350mm. Take αs=1.08 x 10-5 per 0C and αc=1.7 x 10 -5 per 0C . Take Es =2X105 N/mm2 , Ec =1X105 N/mm2 



UNIT 2 

SHEAR FORCE & BENDING 
MOMENT DIAGRAMS  



T

 Draw the shear force and bending moment diagrams for the beam subjected to different

loading conditions.

 To plot the variation of shear force and bending moments over the beams under different types

of loads.

Course Objectives: 

Course Outcomes: 



UNITII 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS 

Shear force 

The algebraic sum of the vertical forces at any section of a beam to the right or left of the section is 

known as shear force 

Bending moment 

The algebraic sum of the moments of all the forces acting to the right or left of the section is known as 

beading moment 

Shear force and bending moment diagrams 

A shear force diagram is one which shows the variation of the shear force along the length of the, 

beam. And a bending moment diagram is one which shows the variation of the bending moment along 

the length of the beam. 

Important points for Shear force and bending moment 

1.Shear Force (V) ≡ equal in magnitude but opposite in direction to the algebraic sum (resultant) of

the components in the direction perpendicular to the axis of the beam of all external loads and support 

reactions acting on either side of the section being considered. 

2. Bending Moment (M) equal in magnitude but opposite in direction to the algebraic sum of the

moments about (the centroid of the cross section of the beam) the section of all external loads and 

support reactions acting on either side of the section being considered. 

Notation and sign convention 

1. Shear force (V)

Positive Shear Force 

A shearing force having a downward direction to the right hand side of a section or upwards to the left 

hand of the section will be taken as ‘positive’. It is the usual sign conventions to be followed for the 

shear force. In some book followed totally opposite sign convention. 

    The upward direction shearing force which is on the left hand of the section XX is positive shear 

force 



 The downward direction shearing force which is on the right hand of the section XX is positive 

shear force. 

Negative Shear Force   

A shearing force having an upward direction to the right hand side of a section or downwards to the 

left hand of the section will be taken as ‘negative’. 

The downward direction shearing force which is on the left hand of the section XX is negative shear 

force.   

The upward direction shearing force which is on the right hand of the section XX is negative shear 

force. 

Bending Moment (M) 

Positive Bending Moment 

A bending moment causing concavity upwards will be taken as ‘positive’ and called as sagging 

bending moment. 

 If the bending moment of the left hand of the section XX is clockwise then it is a positive

bending moment.

 If the bending moment of the right hand of the section XX is anti-clockwise then it is a

positive bending moment.

 A bending moment causing concavity upwards will be taken as ‘positive’ and called as

sagging bending moment

Negative Bending Moment 



 If the bending moment of the left hand of the section XX is anti-clockwise then it is a

negative bending moment.

 If the bending moment of the right hand of the section XX is clockwise then it is a

negative bending moment.

 Hogging

A bending moment causing convexity upwards will be taken as ‘negative’ and called

as hogging bending moment.

Relation between S.F (Vx), B.M. (Mx) & Load (w) 

The value of the distributed load at any point in the beam is equal to the slope of the shear 

force curve. (Note that the sign of this rule may change depending on the sign convention 

used for the external distributed load). 

The value of the shear force at any point in the beam is equal to the slope of the bending 

moment curve. 

Procedure for drawing shear force and bending moment diagram 

Construction of shear force diagram 

 From the loading diagram of the beam constructed shear force diagram.

 First determine the reactions.

 Then the vertical components of forces and reactions are successively summed from

the left end of the beam to preserve the mathematical sign conventions adopted. The

shear at a section is simply equal to the sum of all the vertical forces to the left of the

section.

 The shear force curve is continuous unless there is a point force on the beam. The

curve then “jumps” by the magnitude of the point force (+ for upward force).

 When the successive summation process is used, the shear force diagram should end

up with the previously calculated shear (reaction at right end of the beam). No shear

force acts through the beam just beyond the last vertical force or reaction. If the shear



force diagram closes in this fashion, then it gives an important check on mathematical 

calculations. i.e. The shear force will be zero at each end of the beam unless a point 

force is applied at the end. 

Construction of bending moment diagram 

 The bending moment diagram is obtained by proceeding continuously along the

length of beam from the left hand end and summing up the areas of shear force

diagrams using proper sign convention.

 The process of obtaining the moment diagram from the shear force diagram by

summation is exactly the same as that for drawing shear force diagram from load

diagram.

 The bending moment curve is continuous unless there is a point moment on the

beam. The curve then “jumps” by the magnitude of the point moment (+ for CW

moment).

 We know that a constant shear force produces a uniform change in the bending

moment, resulting in straight line in the moment diagram. If no shear force exists

along a certain portion of a beam, then it indicates that there is no change in moment

takes place. We also know that dM/dx= Vx therefore, from the fundamental theorem

of calculus the maximum or minimum moment occurs where the shear is zero.

 The bending moment will be zero at each free or pinned end of the beam.  If the end

is built in, the moment computed by the summation must be equal to the one

calculated initially for the reaction.

A Cantilever beam with a concentrated load ‘P’ at its free end 

 Shear force: 

At a section a distance x from free end consider the forces to the left, then 

     (Vx) = - P (for all values of x) negative in sign  

i.e. the shear force to the left of the x-section are in downward direction and therefore 

negative. 

Bending Moment: 



Bending Moment 

Taking moments about the section gives (obviously to the left of the section) 

     Mx = -P.x  

(negative sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as negative according to the sign 

convention) 

 so that the maximum bending moment occurs at the fixed end i.e. 

Mmax = - PL(at x = L) 

A Cantilever beam with uniformly distributed load over the whole length 

When a cantilever beam is subjected to a uniformly distributed load whose intensity 

is given w /unit length.  

Shear force:  

Consider any cross-section XX which is at a distance of x from the free end. If we 

just take the resultant of all the forces on the left of the X-section, then   

Vx = -w.x     for all values of ‘x'. 

 At x = 0,   Vx = 0 

     At x = L,  Vx = -wL (i.e. Maximum at fixed end) 

Plotting the equation Vx = -w.x, we get a straight line because it is a equation of a 

straight line y     

 (Vx) = m(- w) .x 

Bending Moment:  

Bending Moment at XX is obtained by treating the load to the left of XX as a 

concentrated load of the same value (w.x) acting through the centre of gravity at x/2. 

Therefore, the bending moment at any cross-section XX is 



A Cantilever beam loaded as shown below draw its S.F and B.M diagram 

Example 1:A cantilever bean of 5 m length. It carries a uniformly distributed load 3 

KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from the 

fixed end. 





A Cantilever beam carrying uniformly varying load from zero at free end and 

w/unit length at the fixed end 



A Simply supported beam with a concentrated load ‘P’ at its mid span 



A Simply supported beam with a concentrated load ‘P’ is not at its mid span 





A Simply supported beam with a uniformly distributed load (UDL) through 

out its length 



Example 2 :A loaded beam as shown below. Draw its S.F and B.M diagram 





Shear force and bending moment diagrams for over-hanging beams 

If the end portion of a beam is extended beyond the support, such beam is known as 

overhanging beam. In case of overhanging beams, the B.M. is positive between the two sup-

ports, whereas the S.M. is negative for the over-hanging portion. Hence at some point, the 

B.M. is zero after changing its sign from positive to negative or vice-versa. That point is 

known as the point of Contraflexure or point of inflexion 

Point of Contraflexure: 

It is the point where the B.M. is zero after changing its sign from positive to negative or vice-

versa. 

Overhanging Beam Subjected to a Concentrated Load at Free End 

Draw shear force and bending moment diagram for the cantilever beam shown in Fig. 



 Statically determinate & Statically Indeterminate beams 

Beams for which reaction forces and internal forces cannot be found out from static equilibrium 

equations alone are called statically indeterminate beam. This type of beam requires deformation 

equation in addition to static equilibrium equations to solve for unknown forces.  

Statically determinate - Equilibrium conditions sufficient to compute reactions. 

Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations 

should be used to find out reactions. 



Tutorial Questions 

1. A cantilever of length 2.0 m carries a uniformly distributed load of 1 kN/m run over a length

of 1.5 m from the free end. Draw the shear force and bending moment diagrams for the
cantilever.

2. An overhanging beam ABC of length 7 m is simply supported at A and B over a span of 5 m

and portion BC overhangs by 2 m. Draw the shearing force and bending moment diagrams
abd determine the point of contra-flexure if it is subjected to uniformly distributed loads of 3

KN/m over the portion AB and a concentrated load of 8 kN at C.

3. A beam of span 10m is simply supported at two points 6m apart with equal over-hang on
either side. Both the overhanging portions are loaded with a uniformly

 distributed load of 2 kN/m run and the beam also carries a concentrated load of 

10 N at the midspan. Construct the SF and BM diagrams and locate the points 
 of inflexion, if any.  

4. Sketch the shear force and bending moment diagrams showing the salient values for the

loaded beam shown in the figure below.

5. A Simply supported beam of span,9 m hL of 15 KN/m over 4 m from the left support and a

concentrated load of 20KN at the center. Draw SF and BM diagrams

6. A Beam of length 12m is supported at left end and the other support is at a distance of 8m
from the left support leaving a overhanging length of 4m on the right side.It carries a UDL of

10 KN/m over the entire length and a concentrated load of 8 KN at the right extreme end.

Draw the shear force and bending moment diagrams and find the position of Contra flexure
point

7. Draw the B. M. D and S. F.D



 

Assignment Questions 

1. A cantilever beam of 2 m long carries a uniformly distributed load of 1.5kN/m over a
length of  1.6 m from the free end. Draw shear force and bending moment diagrams for 
the beam 

2. A simply supported beam 6 m long is carrying a uniformly distributed load of 5kN/m over
a length of 3 m from the right end. Draw shear force and bending moment diagrams for 
the beam and also calculate the maximum bending moment on the beam 

3. A simply supported beam of 16m long carries the point loads of 4KN, 5KN and 3KNat

distances 3m, 7m and 10m respectively from the left support. Calculate the maximum 

shear force 

 and bending moment. Draw the SFD and BMD. 

4. A horizontal beam of 10m long is carrying a uniformly distributed load of 1kN/m. The
beam is supported on two supports 6m apart. Find the position of supports, so that 
bending moment on the beam is small as possible. Also draw the SFD & BMD for the 
beam 

5. A beam of length l carries a uniformly distributed load of w per unit length. The beam is

supported on two supports at equal distances from the two ends. Determine the position 

of the supports, if the B.M, to which the beam is subjected to , is as small as possible. 

Draw the SFD & BMD for the beam. 

6. A simply supported beam of length 10m, carries the uniformly distributed load and two

point loads as shown in Fig.(2) Draw the S.F and B.M diagram for the beam and also 

calculate the Maximum bending moment 



UNIT 3 

FLEXURAL & SHEAR STRESSES 



Course Objectives: 

Course Outcomes: 

 To understand the behavior of beams subjected to shear loads.

 Evaluate stresses induced in different cross-sectional members subjected to shear loads.



Stresses in Beams
As seen in the last chapter beams are subjected to bending moment and shear forces which vary from
section to section. To resist them stresses will develop in the materials of the beam. For the simplicity
in analysis, we consider the stresses due to bending and stresses due to shear separately.

Due to pure bending, beams sag or hog depending upon the nature of bending moment as shown 
in Fig. 10.1. It can be easily observed that when beams sag, fibres in the bottom side get stretched 
while fibres on the top side are compressed. In other words, the material of the beam is subjected 
to tensile stresses in the bottom side and to compressive stresses in the upper side. In case of hogging 
the nature of bending stress is exactly opposite, i.e., tension at top and compression at bottom. Thus 
bending stress varies from compression at one edge to tension at the other edge. Hence somewhere 
in between the two edges the bending stress should be zero. The layer of zero stress due to bending 
is called neutral layer and the trace of neutral layer in the cross-section is called neutral axis [Refer 
Fig. 1].

               UNIT III

Under compression

Neutral
layer

Under tension

(a) Sagging moment case

Under

Under
tension Neutral

layer

Neutral
axis

Neutral
axis

compression

(b) Hogging moment case

Fig. 1. Nature of Stresses in Beams

ASSUMPTIONS

Theory of simple bending is developed with the following assumptions which are reasonably acceptable:
(i) The material is homogeneous and isotropic.

(ii) Modulus of elasticity is the same in tension and in compression.

(iii) Stresses are within the elastic limit.

(iv) Plane section remains plane even after deformations.

(v) The beam is initially straight and every layer of it is free to expand or contract.

(vi) The radius of curvature of bent beam is very large compared to depth of the beam.
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BENDING EQUATION

There exists a define relationship among applied moment, bending stresses and bending deformation
(radius of curvature). This relationship can be derived in two steps:

(i) Relationship between bending stresses and radius of curvature.
(ii) Relationship between applied bending moment and radius of curvature.

(i) Relationship between bending stresses and radius of curvature: Consider an elemental length
AB of the beam as shown in Fig. 2(a). Let EF be the neutral layer and CD the bottom 
most layer. If GH is a layer at distance y from neutral layer EF, initially AB = EF = GH =  
CD.

 Let after bending A, B, C, D, E, F, G and H take positions A′, B′, C′, D′, E′, F′, G′ and H′
respectively as shown in Fig. 2(b). Let R be the radius of curvature and φ be the angle subtended by C′
A′ and D′B′ at centre of radius of curvature. Then,

 EF = E′F′, since EF is neutral axis

= Rφ ...(i)

Strain in GH = 
Final length – Initial length

Initial length

= 
G H′ ′ − GH

GH

But  GH = EF (The initial length)

and

= Rφ
G′H′ = (R + y) φ

∴ Strain in layer GH = 
R y( )+ −φ φR

Rφ

= 
y

R
...(ii)

...(iii)Since strain in GH is due to tensile forces, strain in GH = f/E

where f is tensile stress and E is modulus of elasticity.
From eqns. (ii) and (iii), we get

f

E

y

R
=

�a



or
f E
y R

= ...(1)

(ii) Relationship between bending moment and radius of curvature: Consider an elemental area
δa at distance y from neutral axis as shown in Fig. 3.

y

Fig. 3

From eqn. 1, stress on this element is

R

E
 f =  y ...(i)

∴ Force on this element

E
=  y δa

R

Moment of resistance of this elemental force about neutral axis

R

E
=  y δa y

R

E
=  y2 δa

∴ Total moment resisted by the section M′ is given by

M′ = ∑ E

R
2 δy a

E

R
= ∑ 2 δy a

From the definition of moment of inertia (second moment of area) about centroidal axis, we
know

I = Σy2 δa

∴ M′ = 
E

R
 I

From equilibrium condition, M = M′ where M is applied moment.

R

E∴ M =  I

or
M E

= ...(2)
I R

From eqns. (10.1) and (10.2), we get

I
f
y

M E
R

= = ...(3)



where M = bending moment at the section

I = moment of inertia about centroid axis
f = bending stress

y = distance of the fibre from neutral axis
E = modulus of elasticity and

R = radius of curvature of bent section.
Equation (3) is known as bending equation.

LOCATING NEUTRAL AXIS

Consider an elemental area δa at a distance y from neutral axis [Ref. Fig. 3].
If ‘f ’ is the stress on it, force on it = f δa

But f = 
E

R
y, from eqn. (1).

∴  Force on the element = 
E

R
 y δa

Hence total horizontal force on the beam

= ∑ E

R
δy a

E
= Σ δy a

R

Since there is no other horizontal force, equilibrium condition of horizontal forces gives

E

R
Σ δy a  = 0

As 
E

R
 is not zero,

...(i)  Σ δy a  = 0

If A is total area of cross-section, from eqn. (i), we get

∑ δy a

A
 = 0 ...(ii)

Noting that Σyδa is the moment of area about neutral axis, 
Σ δy a

 should be the distance of

centroid of the area from the neutral axis. Hence 
Σ δy a

A

A

 = 0 means the neutral axis coincides with

the centroid of the cross-section.



MOMENT CARRYING CAPACITY OF A SECTION From 

bending equation, we have

I

M f

y
=

i.e., f = 
M

I
 y ...(i)

Hence bending stress is maximum, when y is maximum. In other words, maximum stress occurs
in the extreme fibres. Denoting extreme fibre distance from neutral fibre as ymax equation (i) will be

fmax = 
M

I
 ymax ...(ii)

In a design fmax is restricted to the permissible stress in the material. If fper is the permissible
stress, then from equation (ii),

fper = 
M

I
 ymax

∴  M = 
I

ymax

 fper

The moment of inertia I and extreme fibre distance from neutral axis ymax are the properties of

section. Hence I  is the property of the section of the beam. This term is known as modulus of
ymax

section and is denoted by Z. Thus

Z = 
I

ymax

...(4)

and ...(5)M = fper Z

Note : If moment of inertia has unit mm4 and ymax has mm, Z has the unit mm3.

The eqn. (5) gives permissible maximum moment on the section and is known as moment 
carrying capacity of the section. Since there is definite relation between bending moment and the 
loading given for a beam it is possible to find the load carrying capacity of the beam by equating 
maximum moment in the beam to moment carrying capacity of the section. Thus

Mmax = fper Z ...(6)
If permissible stresses in tension and compressions are different for a material, moment carrying

capacity in tension and compression should be found separately and equated to maximum values of
moment creating tension and compression separately to find the load carrying capacity. The lower
of the two values obtained should be reported as the load carrying capacity.

SECTION MODULI OF STANDARD SECTIONS

Section modulus expressions for some of the standard sections are presented below:
(i) Rectangular section: Let width be ‘b’ and depth be ‘d’ as shown in Fig. 4.

Since N-A is in the mid depth

ymax = d/2

I = 1

12
bd 3

∴ Z = 
I

y

bd

dmax

/

/
= 1 12

2

3

i.e., Z = 1/6 bd2 ...(10.7)

bb

yymaxmax

N
G

d/2d/2

d/2d/2

A

Fig. 4



(ii) Hollow rectangular section. Figure 5 shows a typical
hollow rectangular section with symmetric opening. For
this,

I = 
BD bd

BD b− d
33

33

12 12

1

12
− )= (

ymax = D/2

∴ Z = 
I

ymax

 = 
1

12 2

BD − bd3 3( )

D /

i.e. Z = 
1
6

BD −3 bd
D

3

...(10.8)
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Fig. 5

(iii) Circular section of diameter ‘d’. Typical section is shown in Fig. 6. For this,

I = 
π
64

 d4

ymax = d/2

∴  Z = 
I

y

d

dmax /
= π /64

2

4

i.e.,
π
32

Z = d3

ymaxmaxy == d/2d/2

N A

d

G

Fig. 6

(iv) Hollow circular tube of uniform section. Referring to Fig. 7,

 I = −D d4 4ππ
64 64

= 
π
64

 (D4 – d4)

ymax = D/2

∴  Z = 
I

y

−D d

Dmax

( )

/
= π

64 2

4 4

i.e., Z = 
π
32

−4 4dD
D

...(9)

(v) Triangular section of base width b and height ‘h’. Referring to Fig. 8,

I = 
bh3

36

 ymax =  
2

3
h

∴ Z = 
I

y

bh

hmax

/=
3 36

/2 3

i.e., Z = 
bh2

24
...10)

Example 1. A simply supported beam of span 3.0 m has a cross-section 120 mm × 180 mm. If 
the permissible stress in the material of the beam is 10 N/mm2, determine

(i) maximum udl it can carry

(ii) maximum concentrated load at a point 1 m from support it can carry.

Neglect moment due to self weight.
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Solution:

Here b = 120 mm, d = 180 mm, I = 
1

12
bd3, ymax = 

d

2

∴  Z = 
1

6
2bd

= 
1

6
120 1802× ×  = 648000 mm3

fper = 10 N/mm2

∴ Moment carrying capacity of the section
= fper × Z

= 10 × 648000 N-mm
(i) Let maximum udl beam can carry be w/metre length as shown in Fig. 9.

In this case, we know that maximum moment occurs at mid span and is equal to Mmax = 
wL2

8
.

Equating it to moment carrying capacity, we get,

w × 3
8

2

 × 106 = 10 × 648000

∴  w = 5.76 kN/m.
(ii) Concentrated load at distance 1 m from the sup-

port be P kN. Referring to Fig. 10.

Mmax = 
P a b

L

P× × = × ×1 2

3

 = 
2

3

P
 kN-m

 = 
2

3
106P ×  N-mm

Equating it to moment carrying capacity, we get

2

3
106P ×  = 10 × 648000

∴ P = 9.72 kN-m.

Example 2. A circular steel pipe of external diameter 60 mm and thickness 8 mm is used as a 
simply supported beam over an effective span of 2 m. If permissible stress in steel is 150 N/mm2, 
determine the maximum concentrated load that can be carried by it at mid span.

Solution:
External diameter  D = 60 mm
Thickness = 8 mm

Fig. 9

Fig. 10

w/m

3 m3 m

P

a = 1ma = 1m b = 2 mb = 2 m

L = 3 mL = 3 m

8 mm

60 mm60 mm
P = ?

2 m2 m

(a) (b)

∴ Internal diameter

Fig. 11   

= 60 – 2 × 8 = 44 mm.

 I  = π
64  (604 – 444) = 452188 mm4



 ymax = 30 mm.

∴ Z = 
I

ymax

= 452188

30
 = 15073 mm3.

Moment carrying capacity

 M = fper Z = 150 × 15073 N-mm.

Let maximum load it can carry be P kN.

Then  maximum moment = 
PL

4

= 
P × 2

4
 kN-m

= 0.5 P ×106 N-mm.

Equating maximum bending moment to moment carrying capacity, we get

0.5P × 106 = 150 × 15073

∴ P = 4.52 kN.

Example 3: Figure 12 (a) shows the cross-section of a cantilever beam of 2.5 m span. Material used 
is steel for which maximum permissible stress is 150 N/mm2. What is the maximum uniformly 
distributed load this beam can carry?

Solution: Since it is a symmetric section, centroid is at mid depth.

 I = MI of 3 rectangles about centroid

180 mm180 mm 10 mm

10 mm

10 mm
400 mm400 mm

w/m = ?

2 m2 m

(a) (b)

Fig. 12

= 
1

12
180× × 103  + 180 × 10 (200 – 5)2

+ 
1

12
10× × 400 − 20( )3  + 10 × (400 – 20) × 02

+ 
1

12
 × 180 × 103 + 180 × 10 (200 – 5)2

= 182.6467 × 106 mm4

[Note: Moment of above section may be calculated as difference between MI of rectangle of size 180 × 400
and 170 × 380. i.e.,

I = 
1

12
 × 180 × 4003 – 

1

12
170× × 3803

ymax = 200 mm.

∴ Z = 
I

ymax

= 182.6467 × 10

200

6

 = 913233 mm3.



∴ Moment carrying capacity

= fper × Z

= 180 × 913233

= 136985000 N-mm.

If udl is w kN/m, maximum moment in cantilever

= wL = 2w kN-mm

= 2w × 106 N-mm

Equating maximum moment to movement carrying capacity of the section, we get

 2w × 106 = 136985000

∴ w = 68.49 kN/m

Example 4. Compare the moment carrying capacity of the section given in example 10.3 with 
equivalent section of the same area but

(i) square section

(ii) rectangular section with depth twice the width and

(iii) a circular section.

Solution:
Area of the section = 180 × 10 + 380 × 10 + 180 × 10

= 7400 mm2

(i) Square section

If ‘a’ is the size of the equivalent square section,

a2 = 7400 ∴ a = 86.023 mm.
Moment of inertia of this section

= 
1

12
 × 86.023 × 86.0233

= 4563333 mm4

 Z = 
I

ymax

= 4563333

86 023. /2
 = 106095.6 mm3

Moment carrying capacity = f Z = 150 ×  106095.6

∴

= 15.914 × 106 N-mm

Moment carrying capacity of I section
Moment carrying capacity of equivalent square section

136985000
 = 

15.914 × 106

 = 8.607.
(ii) Equivalent rectangular section of depth twice the width.

Let b be the width
∴ Depth d = 2b.

Equating its area to area of I-section, we get
  × 2b b = 7400

 b = 60.8276 mm
 ymax = d/2 = b = 60.8276

 M = f 
I

y

b ( )b

bmax

150= × ××1

12

2 3

= 150 × 
8

12
b3 = 150 × 

8

12
 × 60.82763

∴

= 22506193 N-mm.

Moment carrying capacity of I section
Moment carrying capacity of this section

= 136985000

22506193
 = 6.086.



(iii) Equivalent circular section.

Let diameter be d.

Then,
πd 2

4
 = 7400

d = 97.067

 I = 
π

64
 d4

 ymax = d/2

∴   Z = 
I

y
d

max

= π
32

3.

 M = fper Z = 150 × 
π
32

 × 97.0673 = 13468024

∴ Moment carrying capacity of I section
Moment carrying capacity of circular section

= 136985000

13468024
 = 10.17.

[Note. I section of same area resists more bending moment compared to an equivalent square, rectangular or
circular section. Reason is obvious because in I-section most of the area of material is in heavily stressed zone.]

Example 15. A symmetric I-section of size 180 mm × 40 mm, 8 mm thick is strengthened with 240 
mm × 10 mm rectangular plate on top flange as shown is Fig. 13. If permissible stress in the 
material is 150 N/mm2, determine how much concentrated load the beam of this section can carry 
at centre of 4 m span. Given ends of beam are simply supported.

Solution: Area of section A

= 240 × 10 + 180 × 8 + 384 × 8 + 180 × 8 = 8352 mm2

240 mm240 mm

10 mm

400 mm400 mm

8 mm thick

180 mm180 mm

Fig. 13

Let centroid of the section be at a distance y from the bottom most fibre. Then

 A y  = 240 × 10 × 405 + 180 × 8 × (400 – 4) + 384 × 8 × 200 + 180 × 8 × 4

i.e., 8352 y  = 2162400

∴ y  = 258.9 mm

 I = 
1

12
 × 240 × 103 + 240 × 10 (405 – 258.9)2

+ 
1

12
× 180 × 83 + 180 × 8 (396 – 258.9)2

+ 
1

12
 × 8 × 3843 + 8 × 384 (200 – 258.9)2

+ 
1

12
180× × 83  + 180 × 8 (4 – 258.9)2



= 220.994 × 106 mm4

∴ ytop = 405 – 258.9 = 146.1 mm

ybottom = 258.9 mm.
∴ ymax = 258.9 mm

∴ Z = 
I

ymax

.

.
= ×220 994 10

258 9

6

  = 853588.3

∴ Moment carrying capacity of the section
= fper Z = 150 × 853588.3
= 128038238.7 N-mm

= 128.038 kN-m.
Let P kN be the central concentrated load the simply supported beam can carry. Then max

bending movement in the beam

= 
P × 4

4
 = P kN-m

Equating maximum moment to moment carrying capacity, we get

P = 128.038 kN.

Example 6. The cross-section of a cast iron beam is as shown in Fig. 14(a). The top flange is in 
compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm2 and its value 
in compression is 90 N/mm2. What is the maximum uniformly distributed load the beam can carry 
over a simply supported span of 5 m?

Solution:
Cross-section area A = 75 × 50 + 25 × 100 + 150 × 50

= 13750 mm2

Let neutral axis lie at a distance y  from bottom most fibre. Then

Ay  = 75 × 50 × 175 + 25 × 100 × 100 + 150 × 50 × 25

13750 × y  = 1093750

∴ y  = 79.54 mm

75 mm75 mm

150 mm150 mm

25

50 mm50 mm

50 mm50 mm

100 mm100 mm

––yy

ft

fc

(a) (b)

Fig. 14



∴ I = 
1

12
 × 75 × 503 + 75 × 50 (175 – 79.54)2

+ 
1

12
 × 25 × 1003 + 25 × 100 (100 – 79.54)2

+ 
1

12
 × 150 × 503 + 150 × 50 (25 – 79.54)2

= 61.955493 × 106 mm4.
Extreme fibre distances are

 ybottom = y  = 79.54 mm.

ytop = 200 – y  = 200 – 79.54 = 120.46 mm.

Top fibres are in compression. Hence from consideration of compression strength, moment
carrying capacity of the beam is given by

M1 = fper in compression × 
I

ytop

= 90 × 
61.955493 10

120

6

.46
×

  = 46.289178 × 106 N-mm

= 46.289178 kN-m.
Bottom fibres are in tension. Hence from consideration of tension, moment carrying capacity of

the section is given by

  M2 = fper in tension × 
I

ybottom

= 
30 61.955493

79.54
× 106×

= 21.367674 × 106 N-mm

= 21.367674 kN-m.
Actual moment carrying capacity is the lower value of the above two values. Hence moment

carrying capacity of the section is
= 21.367674 kN-m.

Maximum moment in a simply supported beam subjected to udl of w/unit length and span L is

= 
wL2

8

Equating maximum moment to moment carrying capacity of the section, we get maximum load
carrying capacity of the beam as

w × 
5
8

2

 = 21.367674

∴ w = 6.838 kN/m.



 Expression for Shear Stress

Consider an elemental length ‘δx’ of beam shown in Fig. 15 (a). Let bending moment at section A-A be 
M and that at section B-B be M + δM. Let CD be an elemental fibre at distance y from neutral axis and 
its thickness be δy. Then,

Bending stress on left side of elemental fibre

= 
M

I
 y

M

A B

M + M�

C D �y
y

A B
�x�xx

bb

�y
y

ytyt

(a) (b)

C D

q

C D

M
I

yb dy M + M�
I

yb dy

(c)

Fig. 15

∴ The force on left side of element

= 
M

I
 y b δy

Similarly, force on right side on elemental fibre

= M M

I

+ δ  y bdy

∴ Unbalanced horizontal force on right side of elemental fibre

= 
M M

I

+ δ
y bδy – 

M

I
 y bδy

= 
δM

I
 yb δy

There are a number of such elemental fibres above CD. Hence unbalanced horizontal force on
section CD

SHEAR STRESS DISTRIBUTION



= 
dM

Iy

yt

� y b δy

= 
dM

Iy

yt

� y b dy = 
δM

I
yb dy

y

yt

�
Let intensity of shearing stress on element CD be q. [Refer Fig. 15 (c)]. Then equating 

resisting shearing force to unbalanced horizontal force, we get

q b δx = 
δM

I
yb dy

y

yt

�

∴ q = 
δ
δ
M

x bI
yb dy

y

yt1
�

As δx → 0, q = 
dM

dx bI

1
 (a y )

where a y  = Moment of area above the section under consideration about neutral axis.

But we know
dM
dx

 = F

∴ q = 
F
bI

 (a y ) ...(11)

The above expression gives shear stress at any fibre y distance above neutral axis.

 Variation of Shear Stresses Across Standard Sections

Variation of shear stresses across the following three cases are discussed below:
(i) Rectangular

(ii) Circular and

(iii) Isosceles triangle.

(i) Rectangular section. Consider the rectangular section of width ‘b’ and depth shown in Fig.
10.18(a). Let A-A be the fibre at a distance y from neutral axis. Let the shear force on the
section be F.

Ad/2d/2

d/2d/2

A

y

bb

Parabolic
variation

q = 1.5 qmax av

(a) (b)

Fig. 16

From equation (11), shear stress at this section is

F
q =  (a y )

bI

where (a y ) is the moment of area above the section about the neutral axis. Now,

a = b(d/2 – y)



(ii) Circular section. Consider a circular section of diameter ‘d’ as shown in Fig. 17(a) on
which a shear force F is acting. Let A-A be the section at distance ‘y’ from neutral axis at
which shear stress is to be found. To find moment of area of the portion above A-A about
neutral axis, let us consider an element at distance ‘z’ from neutral axis. Let its thickness be
dz. Let it be at an angular distance φ and A-A be at angular distance θ as shown in figure.

y  = y + 
1

2
 (d/2 – y) = 

1

2
 (d/2 + y)

∴ a y  = 
b

2
 (d/2 – y) × 

1

2
 (d/2 + y)

 = 
b

2
 (d2/4 – y2)

I = 
1

12
 bd3

∴ q = 
F

b bd

b
1

12
23

 (d2/4 – y2)

= 
6

3

F

bd
 (d2/4 – y2)

This shows shear stress varies parabolically.

When y = ± d/2, q = 0

At y = 0, qmax = 
6

3

F

bd
d 2

4
 = 1.5 

F

bd

= 1.5 qav

where qav = 
F

bd
 is average shear stress.

Thus in rectangular section maximum shear stress is at neutral axis and it is 1.5 times average
shear stress. It varies parabolically from zero at extreme fibres to 1.5 qav at mid depth as shown in 
Fig. 16(b).

y
A�

	
Z

A

dz

b/2b/2 b/2b/2

dd

Neutral
axis

d/2d/2

d/2d/2

Parabolic
variation

qmax = 4/3 qav

(a) (b)

Fig. 17



Width of element b = 2. d

2
 cos φ

 = d cos φ

z = d

2
 sin φ

dz = d

2
 cos φ dφ∴

∴ Area of the element

a = bdz = d cos φ . 
d

2
 cos φ dφ

= 
d2

2
 cos2 φ dφ

Moment of this area about neutral axis
= area × z

= 
d 2

2
cos2 φ dφ d

2
 sin φ

d 3

4
=  cos2 φ sin φ dφ

∴ Moment of area about section A-A about neutral axis

(a y ) = 
θ

2π/ 2

4�
d  cos2 φ sin φ dφ

= 
3d3 2

4 3

�−
�
�

cos φ �
�
�

/

θ

π

[Since if cos φ = t, dt = – sin φ dφ and – t3/3 is integration]

∴ (a y ) = 
d3

×4 3
�− +��

�
��

cos2 cos3

2

π θ

= 
d

12
 cos3 θ

Now I = 
πd 4

64

∴ q = 
F

bI
 (a y )

= F

dd

d

cos θ π
64

124

3

×  cos3 θ

= 64

12 2

F

πd
 cos2 θ

= 
16

3

F

πd 2  [1 – sin2 θ]

= 
16

3 2

F

πd
1

2

2

− 
	
� y �

�

�
�
��

�
�
��d /

= 
16

1
4

2

2

2

F

3 πd

y

d
−
�
�
�

�
�
�



Hence shear stress varies parabolically.

At y = ± d/2, q = 0

y = 0, q = qmax = 
16

3 2

F

πd

= 
4

3 4 2

F

π / d

= 
4

3 Area

F

= 
4

3
 qav.

where qav = average shear stress.

3

Thus in circular sections also shear stress varies parabolically from zero at extreme edges to the 

maximum value of 4 qav at mid depth as shown in Fig. 17(b).

3

(iii) Isosceles triangular section. Consider the isosceles triangular section of width ‘b’ and 

height ‘h’ as shown in Fig. 18(a). Its centroid and hence neutral axis is at 2h from top

fibre. Now shear stress is to be found at section A-A which is at a depth ‘y’ from top fibre.

bb



yy 2y/32y/3

gg

G

bb

2h/32h/3

h/3h/3

hh

2h/32h/3
h/2h/2

qmax = 1.5qav

qcentroid = 4/3qav

(a) (b)

Fig. 18

At A-A width b′ = 
y
h

b

Area above A-A a = 
1

2
 b′y

1

2

b
y2

h
 = 

Its centroid from top fibre is at 2y .
3

∴ Distance of shaded area above the section A-A from neutral axis y  = 
2

3

2

3

h y− .

∴  a y  = 
1

2

b

h
y2 

2

3

2

3

h y−�
	

�
�

1

3

b

h
 y2 (h – y) = 

Moment of inertia of the section

 I = 
bh3

36
.



∴ Shear stress at A-A

  q = 
F

bI
 a y

= 
F

y
h

b
bh

b

h×
×3

36

1

3
 y2 (h – y)

= 
12

3

F

bh
 y(h – y)

Hence at y = 0, q = 0
At y = h, q = 0

At centroid,  y = 
2

3

h

q = 
12 2

33

F

bh

h
 (h – 2h/3)

= 
8

3

F

bh
 = 

4

3

F

bh1 2/

= 
4

3
 qav

where qav is average shear stress.

For qmax, 
dq

dy
 = 0

i.e.,
12

3

F

bh
 (h – 2y) = 0

i.e., at y = h/2

and hence qmax = 
12

23

F

bh

h
.  (h – h/2)

= 
12

4

3F

bh

F

bh
=

= 
1 5

1 2

. F

bh/

= 1.5 qav.
Thus in isosceles triangular section shear stress is zero at extreme fibres, it is maximum of 1.5

qav at mid depth and has a value 
4

3
 qav at neutral axis. The variation of shear stress is as shown in

Fig. 18(b).



SHEAR STRESSES IN BUILT-UP SECTIONS

In sections like I, T and channel, shear stresses at various salient points are calculated and the shear
stress variation diagram across depth is plotted. It may be noted that at extreme fibres shear stress
is zero since (a y ) term works out to be zero. However it may be noted that the procedure explained
below is for built up section with at least one symmetric axis. If there is no symmetric axis along
the depth analysis for shear stress is complex, and that is treated beyond the scope to this book.

Example 7. Draw the shear stress variation diagram for the I-section shown in Fig. 10.21(a) if it 
is subjected to a shear force of 100 kN.

180180 mmmm

10 mm

10 mm

8080 mmmm

10 mm

400400 mmmm

19.217
1.068

29.10

(a) (b)

Fig. 19 

Solution: Due to symmetry neutral axis is at mid depth.

I = 
1

12
 × 180 × 103 + 180 × 10 × (200 – 5)2

+ 
1

12
 × 10 × 3802 + 10 × 380 × (200 –200)2

+ 
1

12
 × 180 × 103 + 180 × 10 × (200 – 5)2

 = 182.646666 × 106 mm4

Shear stress at y = 200 mm is zero since a y  = 0.

Shear stress at bottom of top flange

 = 
F

bI
 (a y )

= 
100 1000

180 182.646666× × 10
180 10 1956

× × × ×( )

= 1.068 N/mm2

Shear stress in the web at the junction with flange

= 
100 1000

10 182.646666× × 106

×
 (180 × 10 × 195)

= 19.217 N/mm2



Symmetric  values  will  be  there  on  lower  side.  Hence  shear  stress  variation is as shown 
in Fig. 19(b).

Example 8. A beam has cross-section as shown in Fig. 20(a). If the shear force acting on this 
is 25 kN, draw the shear stress distribution diagram across the depth.

120 mm120 mm

12 mm

12 mm

120 mm120 mm

2.9 N/mm
2

29 N/mm
2

31.17 N/mm
2

(a) (b)

Fig. 20

Solution: Let y be the distance of centroid of the section from its top fibre. Then

yt = 
Moment of area about top fibre

Total area

= 
120 12 6 + (120 12) 12× × − × × + −�

	
�
�

× + − ×

12
120 12

2
120 12 120 12 12( )

= 34.42 mm

Shear stress at N-A

= 
100 1000

10 × 182.646666
180 10 195 10 200 10

190

2

× �× × × + × − ) ×��
�
��

(

= 29.10 N/mm2.

∴ Moment of inertia about centroid

I = 
1

12
 × 120 × 123 + 120 × 12 (34.42 – 6)2

+ 
1

12
× 12 × 1083 + 12 × 108 �34

108

2

2

.42 −
	

�
�

= 2936930 mm4

Shear stresses are zero at extreme fibres.

Shear stress at bottom of flange:

Area above this level, a = 120 × 12 = 1440 mm2

Centroid of this area above N-A

 y  = 34.42 – 6 = 28.42 mm

Width at this level b = 120 mm.

∴ qbottom of flange = 
25 1000

120 2936930

×
×

 × 1440 × 28.42

= 2.90 N/mm2

Shear stress at the same level but in web, where width b = 12 mm



= 
25 1000

2936930

×
12 ×

 × 1440 × 28.42

= 29.0 N/mm2

Shear stress at neutral axis:

For this we can consider a y  term above this section or below this section. It is convenient to
consider the term below this level.

a = 12 × (120 – 34.42) = 1026.96 mm2

The distance of its centroid from N-A

= 
120 34

2

− .42
 = 42.79 mm.

Width at this section b = 12 mm.

∴  q = 
25 1000

2936930

×
12 ×

 × 1026.96 × 42.79

= 31.17 N/mm2

Hence variation of shear stress across the depth is as shown in Fig. 10.22(b).

Example 9. The unsymmetric I-section shown in Fig. 21(a) is the cross-section of a beam, which 
is subjected to a shear force of 60 kN. Draw the shear stress variation diagram across the depth.

100 mm100 mm

yytt
20 mm

150 mm150 mm

160160

20

20

200 mm200 mm

2.61 N/mm
2

13.03 N/mm
2

18.37 N/mm
2

15.24 N/mm
2

2.04 N/mm
2

(a) (b)

Fig. 21

Solution: Distance of neutral axis (centroid) of the section from top fibre be yt. Then

 yt = 

100 20 10 200 20 20 20 20
60
2

150 20 200 10

100 20 160 20

× × + − − ×) × 1+�
	

�
�

+ × × −
× + 20× + 150 ×

(

( )

 = 111 mm

I = 1

12
 × 100 × 203 + 100 × 20 (111 – 10)2

+ 1

12
 × 20 × 1603 + 160 × 20 (111 – 100)2

+ 1

12
 × 150 × 203 + 150 × 20 (111 – 190)2



= 2.61 N/mm2

∴ Shear stress at the same level, but in web

= 
60 1000

20 46505533

×
×

 × 100 × 20 (111 – 10)

= 13.03 N/mm2

 = 46505533 mm4

Shear stress at bottom of top flange

= 
F

bI
 a y

= 
60 1000

100 46505533

×
×

 × 100 × 20 × (111 – 10)

Shear stress at neutral axis:

a y  = a y  of top flange + a y  of web above N-A

= 100 × 20 × (111 – 10) + 20 × (111 – 20) × 
111 20

2

−

 = 284810 mm3.

∴ Shear stress at neutral axis

 = 
F

bI
 (a y )

 = 
60 1000

20 46505533

×
×

 × 284810

 = 18.37 N/mm2.
Shear stress at junction of web and lower flange:

Considering the lower side of the section for finding a y , we get

a y  = 150 × 20 × (190 – 111) = 237000 mm3

∴ q = 
60 1000

20 46505533

×
×

 × 237000

= 15.28 N/mm2

At the above level but in web, shear stress

 = 
60 1000

150 46505533

×
×

 × 237000

= 2.04 N/mm2

At extreme fibres shear stress is zero. Hence variation of shear across the depth of the section 
is as shown in Fig. 21.



IMPORTANT FORMULAE

1. Bending equation:
M

I

f

y

E

R
= = .

2. Modulus of section Z =
I

ymax

.

3. Moment carrying capacity of section = fper Z.
4. Section modulus of various sections:

(i) Rectangular: 1  bd2 (ii) Hollow rectangular: 1 BD − bd3 3

D6

(iii) Solid circular section: 
π
32

d3

6

(iv) Hollow circular section: π
32

−D d4 4

D

(v) Solid triangular section: bh2

24

5. Shear stress in a beam q =
F

bI
ay( )

6. In rectangular sections,
 qmax = 1.5 qav, at y = d/2

In circular sections  qmax = 
4

3
 qav , at centre

In triangular section, qmax = 1.5 qav, at y = 
h

2
.



`  

Tutorial Question 

1. Derive the equation of bending moment and write down the assumptions for theory of simple

bending.

2. A simply supported beam carries a U.D.L. of intensity 2.5 kN/metre over entire
span of 5 meters. The cross-section of the beam is a T-section having the dimensions

Top ange: 125 mm cm X 25 mm

Web: 175 mm cm X25 mm

Calculate the maximum shear stress for the section of the beam.

3. A cantilever beam of length 10 m has a cross section of 100 mm X 130 mm has a UDL of 10

KN/m over a length of 8 m from the left support and a concentrated load of 10 KN at the right

end. Find the bending stress in the beam

4. A beam of T - section is having flange 120mm × 15mm and web 100mm × 15mm. It is
subjected to a shear force of 24kN. Draw shear stress distribution across the depth marking

values at salient points.

5. An I section is having overall depth as 550mm and overall width as 200mm. The  thickness of
the flanges is 25mm where as the thickness of the web is 20mm. If the section carries a shear

force of 45kN, calculate the shear stress values at salient points and draw the sketch showing

variation of shear stress.



`  

Assignment Questions 

1. An I section beam 350 x 150 mm as shown in Fig. has a web thickness of 10 mm and a

flange thickness of 20 mm. If the shear force acting on the section is 40kN, find the 

maximum shear stress developed in the I section 

2. A rectangular beam 300 mm deep is simply supported over a span of 4m. Determine the

uniformly distributed load per meter which the beam may carry, if the bending stress should 

not exceed 120 N/mm2. Take I = 8x106 mm4.  

3. An I-section beam 350mmX200mm has a web thickness of 12.5mm and a flange thickness

of 25mm. It carries a shearing force of 200kN at a section. Sketch the shear stress 

distribution across the section. 

4. A rolled steel joist 200mmx160mm wide has flange 22mm thick and web 12mm thick.

Find the proportion, in which the flanges and web resist shear force. 

5. A simply supported beam of 2m span carries a U.D.L. of 140 kN/m over the whole span.

The cross section of the beam is T-section with a flange width of 120mm, web and flange 

thickness of 20mm and overall depth of 160mm.  Determine the maximum shear stress in 

the beam and draw the shear stress distribution for the section. 

6. A simply supported symmetric I-section has flanges of size 200 mmX 15 mm and its overall

depth is 520 mm. Thickness of web is 10mm. It is strengthened with a plate of size 250 mm 
X 12mm on compression side. Find the moment of resistance of the section if permissible 

stress is 160 M Pa. How much uniformly distributed load it can carry if it is used  as a 

cantilever of span 3.6m.  



UNIT 4 

     DEFLECTION OF BEAMS 



Course Objectives: 

Course Outcomes: 

 To understand the behavior of beams under complex loading.

 Evaluate the deflections in beams subjected to different loading conditions.



Deflection of Beam 

Methods to compute deflections in beam 

 Double integration method (without the use of singularity functions)

 Macaulay’s Method (with the use of singularity functions)

 Moment area method

Elastic line or Elastic curve 

Assumptions in Simple Bending Theory 

 Beams are initially straight

 The material is homogenous and isotropic i.e. it has a uniform composition and its mechanical

properties are the same in all directions

 The stress-strain relationship is linear and elastic

 Young’s Modulus is the same in tension as in compression

 Sections are symmetrical about the plane of bending

 Sections which are plane before bending remain plane after bending

Non-Uniform Bending 

 In the case of non-uniform bending of a beam, where bending moment varies from section to section,

there will be shear force at each cross section which will induce shearing stresses

 Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so that

plane cross sections do not remain plane even after bending

We have to remember that the differential equation of the elastic line is 

2

2

d
=M

dx x

y
EI

Proof: Consider the following simply supported beam with UDL over its length. 

From elementary calculus we know that curvature of a line (at point Q in figure) 
2

2

2 3/2

2

2

d y
1 dx where R  radius of curvature
R dy

1
dx

dy
For small deflection, 0

dx

1 d y
or

R dx
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Bending stress of the beam (at point Q)

M .y
 

I
From strain relation we get

 1
and

R E

M1

R EI
Md y

Therefore
EIdx

d y
or EI  M

dx

x

y

General expression 

From the equation 
2

2 x

d y
EI M

dx
  we may easily find out the following relations. 

 
4

4
 

d y
EI

dx
 Shear force density (Load) 

 
3

3 x

d y
EI V

dx
 Shear force 

 
2

2 x

d y
EI M

dx
 Bending moment 

 
dy

= θ = slope
dx

 

 y =   = Deflection, Displacement
 Flexural rigidity = EI

Double integration method (without the use of singularity functions) 

 Vx=  dx

 Mx = xV dx

 
2

2 x

d y
EI M

dx


 
1

xSlope M dx
EI

     

 Deflection dx   
4-step procedure to solve deflection of beam problems by double integration method 

Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary 

conditions), analyze the problem to be solved 

Step 2: Write governing equations for, 
2

2 x

d y
EI M

dx


Step 3: Solve governing equations by integration, results in expression with unknown integration constants 
Step 4: Apply boundary conditions (determine integration constants)  



Following table gives boundary conditions for different types of support. 

Types of support and Boundary Conditions Figure 

Clamped or Built in support or Fixed end : 

( Point A)  

 
 

, 0

, 0





Deflection y

Slope

 , 0 . .A finite valueMoment M i e

Free end: (Point B) 

 
 

, 0 . .A finite value

, 0 . .A finite value





Deflection y i e

Slope i e

 , 0Moment M

Roller (Point B) or Pinned Support (Point A) or 
Hinged or Simply supported.  

 , 0Deflection y

 , 0 . .A finite value Slope i e

 , 0Moment M

End restrained against rotation but free to 
deflection 

 , 0 . .A finite valueDeflection y i e

 , 0 Slope

 , 0Shear force V

Flexible support 

 , 0 . .A finite valueDeflection y i e

 , 0 . .A finitevalueSlope i e 

 ,  r

dy
Moment M k

dx
 , .Shear force V k y



Using double integration method we will find the 
deflection and slope of the following loaded beams 
one by one. 

(i) A Cantilever beam with point load at the free end.  

(ii) A Cantilever beam with UDL (uniformly distributed load) 

(iii) A Cantilever beam with an applied moment at free end. 

(iv) A simply supported beam with a point load at its midpoint. 

(v) A simply supported beam with a point load NOT at its midpoint. 

(vi) A simply supported beam with UDL (Uniformly distributed load) 

(vii) A simply supported beam with triangular distributed load (GVL) gradually varied load.  

(viii) A simply supported beam with a moment at mid span. 

(ix) A simply supported beam with a continuously distributed load the intensity of which at any 

point ‘x’ along the beam is sinx

x
w w

L

   
 

(i) A Cantilever beam with point load at the free end.  
We will solve this problem by double integration method. For that at first we have to calculate (Mx). 

Consider any section XX at a distance ‘x’ from free end which is left end as shown in figure. 

  Mx = - P.x 

We know that differential equation of elastic line 

2

2

d y
EI .

dx xM P x  

Integrating both side we get 

2

2

2

d y
EI  P x dx

dx

dy x
or EI P. A .............(i) 

dx 2

 

  

 

2

3

Again integrating both side we get

x
EIdy =  P A  dx

2

Px
or  EIy = - Ax +B ..............(ii)

6
Where A and B is integration constants.




 



Now apply boundary condition at fixed end which is at a distance x = L from free end and we also know that 

at fixed end 

at   x = L,    y = 0 

dx

dy
at   x = L,    0  



from equation (ii) EIL = - 
PL3

+ AL+B
6

..........(iii)  

from equation (i) EI.(0) = -
PL2

2
+ A  …..(iv) 

Solving (iii) & (iv) we get   A = 
PL2

2
and  B = - 

PL3

3

Therefore,    y = -
Px3 PL2x PL3

 
6EI 2EI 3EI

The slope as well as the deflection would be maximum at free end hence putting x = 0 we get 

ymax = -
PL3

3EI
 (Negative sign indicates the deflection is downward) 

(Slope)max =  max = 
PL2

2EI
Remember for a cantilever beam with a point load at free end. 

Downward deflection at free end,    PL3

3EI
And slope at free end,    PL2

2EI

(ii) A Cantilever beam with UDL (uniformly distributed load) 

We will now solve this problem by double integration method, for that at first we have to calculate (Mx). 

Consider any section XX at a distance ‘x’ from free end which is left end as shown in figure. 

 
2

x

x wx
w.x .

2 2
M    

We know that differential equation of elastic line 

2 2

2

d y wx
EI

dx 2
 

Integrating both sides we get 

2 2

2

3

d y wx
EI dx

2dx

dy wx
EI A ......(i)

dx 6
or

 

  

 

 

3

4

Again integrating both side we get

wx
EI dy A  dx

6

wx
or   EIy = - Ax B.......(ii) 

24
where A and B are integration constants

 
  

 



 



Now apply boundary condition at fixed end which is at a distance x = L from free end and we also know that 

at fixed end. 

at  x = L,    y = 0 

dx

dy
at  x = L, = 0 

wL3

from equation (i) we get     EI (0) = 
-

6
+ A or A =

+wL3

6

from equation (ii) we get EI.y = - 
wL4

24
+ A.L + B 

or    B = - 
wL4

8

The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get 

 



4

max

3

maxmax

wL
y Negative sign indicates the deflection is downward

8EI

wL

6EI


 

slope 

Remember: For a cantilever beam with UDL over its whole length, 

Maximum deflection at free end    wL4

8EI
Maximum slope,    wL3

6EI
(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end. 

Consider a section XX at a distance ‘x’ from free end, the bending moment at section XX is 

(Mx) = -M 

We know that differential equation of elastic line 

2

2

d y
or  EI M

dx
 

2

2

Integrating both side we get

d y
or  EI M dx

dy
or   EI Mx + A ...(i) 

dx

dx

 

 

 



 
2

Again integrating both side we get

EI dy = M x +A dx

Mx
or  EI y Ax + B  ...(ii) 

2
Where A and B are integration constants.

  

 

2 2
2

2 2

applying boundary conditions in equation (i) &(ii) 

dy
at   x = L,  0 gives  A = ML

dx

ML ML
at   x = L, y = 0  gives   B = ML

2 2

Mx MLx ML
Therefore deflection equation is   y = -

2EI EI 2EI
Which is the 



  

 

equation of elastic curve.

Maximum deflection at free end   
2ML

=
2EI

(It is downward) 

Maximum slope at free end    
ML

EI
Let us take a funny example: A cantilever beam AB of length ‘L’ and uniform flexural rigidity EI has a 

bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the bracket. 

Find the ratio a/L required in order that the deflection of point A is zero. 

We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam. 

Due to point load ‘P’ at free end ‘A’ downward deflection  
3PL

3EI
 

Due to moment M = P.a at free end ‘A’ upward deflection    ML2


(P.a)L2

2EI 2EI
For zero deflection of free end A 

PL3

3EI
=

(P.a)L2

2EI

or
a 2

L 3




(iv) A simply supported beam with a point load P at its midpoint. 
A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure. 

We want to locate the point of maximum deflection on the elastic curve and find its value. 

In the region 0 < x < L/2 

Bending moment at any point x (According to the shown co-ordinate system) 

Mx = .x
2

P 
 
 

and In the region L/2 < x < L 

Mx =  P
x L / 2

2

We know that differential equation of elastic line 

 
2

2

d y P
.x In the region 0 < x < L/2

2dx
EI 

Integrating both side we get

 

2

3

P
 EI dy = x  A dx

4

Px
or EI y = Ax + B (ii) 

12
Where A and B are integrating constants

 

 



  

2

2

2

d y P
or EI x dx 

2dx

dy P x
or  EI . A  (i) 

dx 2 2



 

 

Again integrating both side we get  

 Now applying boundary conditions to equation (i) and (ii)
 we get

2

at  x = 0,  y = 0

dy
at  x = L/2, 0

dx

PL
A = -  and B = 0

16



Px3 PL12

  Equation of elastic line, y = -
12 16

x  

Maximum deflection at mid span (x = L/2) = PL3

48EI
and maximum slope at each end    PL2

16EI



(v) A simply supported beam with a point load ‘P’ NOT at its midpoint. 
A simply supported beam AB carries a concentrated load P as shown in the figure. 

 We have to locate the point of maximum deflection on the elastic curve and find the value of this deflection. 

Taking co-ordinate axes x and y as shown below 

x

P.a

For the bending moment we have 

In the region  0  x   a,  M .x
L

  
 
 

And, In the region  a  x   L,  x

P.a
M L - x

L
 

 

2

2

2

2

So we obtain two differential equation for the elastic curve.

d y P.a
EI .x for  0  x   a

Ldx

d y P.a
and  EI . L - x for  a  x   L

Ldx



 

Successive integration of these equations gives 

2

1

2
2

3

1 1

2 3

2 2

dy P.a x
EI . + A ......(i) for  o  x  a

dx L 2
dy P.a

EI P.a x - x  A ......(ii) for a  x  L
dx L

P.a x
EI y . +A x+B ......(iii) for  0  x

L 6

x P.a x
EI y P.a . A x + B .....(iv) for a  x  L

2 L 6

a





 

 

Where A1, A2, B1, B2are constants of Integration. 

Now we have to use Boundary conditions for finding constants: 

BCS     (a)  at  x = 0, y = 0 

(b) at x = L, y = 0 

(c) at x = a, 
dy

dx
 
 
 

= Same for equation (i) & (ii)

(d) at x = a, y = same from equation (iii) & (iv) 

We get    2 2 2 2
1 2

Pb P.a
A L b ; A 2L  a

6L 6L
 

3
1 2and B  0; B  Pa / 6EI  

Therefore we get two equations of elastic curve 



 

   

2 2 2

3 2 2 3

Pbx
EI y = - L b x ..... (v) for  0 x a

6L

Pb L
EI y = x - a L b x - x . ...(vi)  for  a x L

6L b

   

        
  

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v) applies. 

Setting the derivative of this expression equal to zero gives 

2 2a(a+2b) (L-b)(L+b) L b
x = 

3 3 3


 

at that point a horizontal tangent and hence the point of maximum deflection substituting this value of x 

into equation (v), we find,  
2 2 3/2

max

P.b(L b )
y

9 3. EIL




Case –I: if a = b = L/2 then 

Maximum deflection will be at x =
 22L L/2

L/2
3


  

i.e.  at mid point 

and  
    3/222

3

max

P. L/2 L L/2 PL
y

48EI9 3 EIL


 
  

(vi) A simply supported beam with UDL (Uniformly distributed load) 
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length over its 

whole span L as shown in figure. We want to develop the equation of the elastic curve and find the 

maximum deflection   at the middle of the span. 

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x 

2

x

wL x
M .x - w.

2 2


Then the differential equation of deflection becomes 

2 2

x2

d y wL x
EI M .x - w.

2 2dx
 

Integrating both sides we get 

2 3dy wL x x
EI . . A  .....(i)

dx 2 2 2 3

w
    

Again Integrating both side we get 

3 4

Ax + B 
2 6 2 12

EI y
wL

.
x


w

.
x

  .....(ii)  

Where A and B are integration constants. To evaluate these constants we have to use boundary conditions. 

at  x = 0, y = 0              gives    B = 0 

0
3

24

dy
 wL

at   x = L/2,       gives   A  
dx

Therefore the equation of the elastic curve 

3
3 4 3 2 3wL w wL wx

y  . . .x  =
12EI 24EI 12EI 24EI 

x  x  L  2L.x  x 



The maximum deflection at the mid-span, we have to put x = L/2 in the equation and obtain 

Maximum deflection at mid-span, 

4

   5

384

wL

EI
 (It is downward) 

And Maximum slope A B at the left end A and at the right end b is same putting x = 0 or x = L Therefore

we get Maximum slope   
3

24

wL

EI

(vii) A simply supported beam with triangular distributed load (GVL) gradually 
varied load.  

A simply supported beam carries a triangular distributed load (GVL) as shown in figure below. We have to 

find equation of elastic curve and find maximum deflection   .

In this (GVL) condition, we get 

4

4

d y w
EI .x

Ldx
 load   .....(i)  

Separating variables and integrating we get 

 
3 2

x3

d y wx
EI V + A .....(ii) 

2Ldx
  

Again integrating thrice we get 

2 3

x2

d y wx
EI + Ax +B 

6Ldx
M   .....(iii)  

wx4 Ax2dy
EI + +Bx +C

dx 24L 2
  .....(iv)  

wx5 Ax3 Bx2

EI y + + +Cx +D .....(v)
120L 6 2

 

Where A, B, C and D are integration constant. 

Boundary conditions  at x = 0, Mx = 0, y = 0 

at x = L, Mx = 0,  y = 0  gives 

wL
A = ,

6
B = 0, 

7wL3

C = - 
360

,  D = 0 

Therefore  4 2 2 4wx
y = - 7L 10L x  3x (negative sign indicates downward deflection) 

360EIL

To find maximum deflection , we have 
dy

dx
 = 0 

And it gives x = 0.519 L and maximum deflection   = 0.00652
wL4

EI



(viii) A simply supported beam with a moment at mid-span 
A simply supported beam AB is acted upon by a couple M applied at an intermediate point distance ‘a’ from 

the equation of elastic curve and deflection at point where the moment acted. 

Considering equilibrium we get A

M
R

L
  and B

M
 R

L
 

Taking co-ordinate axes x and y as shown, we have for bending moment 

In the region x

M
 0  x  a, M .x

L


In the region x

M
 a  x  L, M

L
 x - M  

So we obtain the difference equation for the elastic curve 

2

2

2

2

d y M
EI .x 

 for 0  x  a

Ldx

d y M
and EI .x M for a  x  L

Ldx





Successive integration of these equation gives 

2

1

2

2

3

1 1

3 2

2 2

dy M x
EI . A ....(i) for 0  x  a

dx L 2

dy M x
EI - Mx+ A .....(ii)  for a  x  L

dx L 2

M x
and EI y = . A x + B ......(iii) for 0  x  a

L

M x Mx
 EI y = A x + B ......(iv)  for a  x  L

L 2





 

 



 

Where A1, A2, B1 and B2 are integration constants. 

To finding these constants boundary conditions 

(a)  at  x = 0,  y = 0 

(b)  at  x = L,  y = 0 

(c)  at  x = a, 
 dy 
 dx  

= same form equation (i) & (ii)

(d)  at  x = a, y = same form equation (iii) & (iv) 

2 2

1 2

2

1 2

ML Ma ML Ma
A M.a + + ,  A

3 2L 3 2L

Ma
B  0, B

2

   



With this value we get the equation of elastic curve 





2 2 2

2 2

Mx y = - 6aL - 3a  x  2L for 0  x  a
6L

  deflection of x = a,

Ma  y = 3aL - 2a L
3EIL



(ix) A simply supported beam with a continuously distributed load the intensity 

of which at any point ‘x’ along the beam is sinxw  w   x 
 L 
 

At first we have to find out the bending moment at any point ‘x’ according to the shown co-ordinate system. 

We know that  

 xd V
w sin

dx L
 x    
 

Integrating both sides we get 

 x

x

d V w sin dx +A
L

wL x
or V .cos A






 x    
 

     L 
 

 

and we also know  that

 x
x

d M wL
V A

dx L




  cos



x 
 

 

Again integrating both sides we get

 x

2

x 2

wL
d M cos A dx

L

wL
or  M sin Ax +B







 x 
 





  

   

  x   L 
 

 

Where A and B are integration constants, to find out the values of A and B. We have to use boundary 

conditions 

at  x = 0, Mx = 0 

and at x = L, Mx = 0 

From these we get  A = B = 0. Therefore 
2

x 2

wL
M sin

L




 x   
 

So the differential equation of elastic curve 

2 2

x2 2

d y wL
EI sin

Ldx




 x M   
 

Successive integration gives 

3

3

4

4

dy wL
EI cos C .......(i)

dx

wL x
EIy sin Cx D .....(ii)







   x   L 
 

     L 
 

Where C and D are integration constants, to find out C and D we have to use boundary conditions 

 at  x = 0,     y = 0 

 at   x = L,    y = 0 

and that give  C = D = 0 

Therefore slope equation 
3

3

dy wL
EI cos

dx L




 x  
 
   

and Equation of elastic curve 
4

4

wL
y sin

 EI
  x  
 
 L 

(-ive sign indicates deflection is downward) 

Deflection will be maximum if sin
L

  x 






is maximum



x
sin

L

 
 
 

= 1  or    x = L/2 

and Maximum downward deflection   =
4

4

WL

EI
(downward). 

Macaulay's Method 

 When the beam is subjected to point loads (but several loads) this is very convenient method for

determining the deflection of the beam.

 In this method we will write single moment equation in such a way that it becomes continuous for

entire length of the beam in spite of the discontinuity of loading.

 After integrating this equation we will find the integration constants which are valid for entire

length of the beam. This method is known as method of singularity constant.

Procedure to solve the problem by Macaulay’s method 

Step – I:  Calculate all reactions and moments 

Step – II: Write down the moment equation which is valid for all values of x. This must contain brackets. 

Step – III: Integrate the moment equation by a typical manner. Integration of (x-a) will be 

 2 2x-a x
 not ax

2 2

 
 

 
 and integration of (x-a)2 will be 

 3x-a

3
 so on. 

Step – IV: After first integration write the first integration constant (A) after first terms and after second 

time integration write the second integration constant (B) after A.x . Constant A and B are valid for all 

values of x. 

Step – V: Using Boundary condition find A and B at a point x = p if any term in Macaulay’s method, (x-a) is 

negative (-ive) the term will be neglected. 

(i) Let us take an example: A simply supported beam AB length 6m with a point load of 30 kN is applied 

at a distance 4m from left end A. Determine the equations of the elastic curve between each change of load 

point and the maximum deflection of the beam. 

Answer: We solve this problem using Macaulay’s method, for that first writes the general momentum 

equation for the last portion of beam BC of the loaded beam. 

 
2

x2

d y
EI M 10x -30 x - 4 .m ....(i)

dx
N   

By successive integration of this equation (using Macaulay’s integration rule 

e.g    2
x a

a dx )
2

x


 
We get 



Example: 

Superpose the deformations due to Loading I and Loading II as shown. 

For the beam and loading shown, determine 
the slope and deflection at point B. 



 

Tutorial Questions 

1. A cantilever 3m long has moment of inertia 800 Cm4 for 1m length from the free end,

    1600 cm4 for the next 1m length 2400 Cm4 for the last 1m. length. At the free    

  end a load of 1 KN acts on the cantilever. Determine the slope and deflections at the 
  free end of the cantilever E= 210 GN/ m2 

2. A simply supported beam of span 6m carries two point loads of 60KN and 50KN at 1m and

3m respectively from the left end. Find the position and magnitude of max. deflection. Take
E= as 200 GPa and I =8500cm4. Also determine the value of deflection at the same point if

one more load of 60KN is placed over the left support.

3. A beam AB of 8 m span is simply supported at the ends. It carries a point load of
10 kN at a distance of 1 m from the end A and a uniformly distributed load of 5

kN/m for a length of 2 m from the end B. If I = 10 _ 106 m4, Using Macaulay`s

Method, Determine:

(a) Deection at the mid-span,
(b) Maximum deection, and

(c) Slope at the end A.

4. A simply supported beam of span 6m carries two point loads of 60KN and 50KN at 1m and 3m

respectively from the left end. Find the position and magnitude of max. deflection. Take E= as

200 GPa and I =8500cm4. Also determine the value of deflection at the same point if one more

load of 60KN is placed over the left support.

5. A simply supported beam of 8m carries a partial u d l of intensity 5KN/m and length 2m,

sarting from 2m from the left end. Find slope at left support and central deflection. Take E= 

200Gpa and I=8×108mm4 



 

Assignment Questions 

1. A simply supported beam of 8m carries a partial u d l of intensity 5KN/m and length 2m,

sarting from 2m from the left end. Find slope at left support and central deflection. Take E= 

200Gpa and I=8×108mm4  
2. A simply supported beam span 14m, carrying concentrated loads of 12KN and 8KN at two

points 3mts and 4.5m from the two ends respectively.  Moment of Inertia I for the beam is 160 

x103 mm4 and E = 210KN/mm2.  Calculate deflection of the beam at points under the two loads 
by macaulay’s method 

3. A Cantilever beam AB 6 mts long is subjected to u.d.l of w KN/m spread over the entire

length.  Assume rectangular cross-section with depth equal to twice the breadth.  Determine the 

minimum dimension of the beam so that the vertical deflection at free end does not exceed 1.5 cm 
and the maximum stress due to bending does not exceed 10 KN/cm2.  E = 2 X 107 N/ cm2. 

4. A beam section is 10m long and is simply supported at ends. It carries concentrated loads

of100kN and 60kN at a distance of 2m and 5m respectively from the left end. Calculate the 
deflection under the each load find also the maximum deflection. Take I = 18 X 108mm4 and E = 

200kN/mm2.      

5. A simply supported beam of span 6m carries two point loads of 60KN and 50KN at 1m and

3m respectively from the left end. Find the position and magnitude of max. deflection. Take 

E= as 200 GPa and I =8500cm4. Also determine the value of deflection at the same point if 

one more load of 60KN is placed over the left support. 
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UNIT 5 

TORSION OF CIRCULAR 
SHAFTS &THIN CYLINDERS 



Course Objectives: 

Course Outcomes: 

 To analyze the cylindrical shells under circumferential and radial loading

 Analyze  the thin cylindrical shells.



 

Unit v 

Torsion of Circular Shafts 

The product of this turning force and the distance between the point of application of the force and the 

axis of the shaft is known as torque, turning moment or twisting moment. And the shaft is said to be 

subjected to torsion. Due to this torque, every cross-section of the shaft is subjected to some shear 

stress. 

Assumptions for Shear Stress in a Circular Shaft Subjected to Torsion 

1. The material of the shaft is uniform throughout. 

2. The twist along the shaft is uniform. 

3. Normal cross-sections of the shaft, which were plane and circular before the twist, remain plane 

and circular even after the twist. 

4. All diameters of the normal cross-section, which were straight before the twist, remain straight 

with their magnitude unchanged, after the twist. 

Torsional Stresses and Strain 

 

Consider a circular shaft fixed at one end and subjected to a torque at the other end as shown in 

Fig.1 

T = Torque in N-mm, 

l = Length of the shaft in mm and 

R = Radius of the circular shaft in mm. 

As a result of this torque, every cross-section of the shaft will be subjected to shear stresses. Let the 

line CA on the surface of the shaft be deformed to CA′ and OA to OA′ as shown in Fig.1 

∠ACA′ = φ in degrees 

∠AOA′ = θ in radians 

`



`  

τ = Shear stress induced at the surface and 

C = Modulus of rigidity, also known as torsional rigidity of the shaft 

material. 

 

We know that shear strain = Deformation per unit length 

 

 

Strength of a Solid Shaft  

 



`  

 

 

 



`  

 

 

 

 

 

 



`  

 

Power Transmitted by a Shaft 

Example 2: A hollow shaft is to transmit 200 kW at 80 r.p.m. If the shear stress is not to 

exceed 60 MPa and internal diameter is 0.6 of the external diameter, find the diameters of the 

shaft. 

SOLUTION. Given : Power (P) = 200 kW ;  Speed of shaft (N) = 80 r.p.m. ;  Maximum 

shear stress (τ) = 60 MPa = 60 N/mm2 and internal diameter of the shaft (d) = 0.6D (where D 

is the external diameter in mm). 
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Polar Moment of Inertia 
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Thin Cylinders 

In general, if the thickness of the wall of a shell is less than 1/10th to 1/15th of its diameter, it 

is known as a thin shell. 

Stresses in a Thin Cylindrical Shell 

The walls of the cylindrical shell will be subjected to the following two types of tensile 

stresses: 

1. Circumferential stress  

2. Longitudinal stress. 

Circumferential Stress 

 

Consider a thin cylindrical shell subjected to an internal pressure as shown in Fig.(a) and (b). 

We know that as a result of the internal pressure, the cylinder has a tendency to split up into 

two troughs as shown in the figure. 

Let        l= Length of the shell 

           d = Diameter of the shell, 



`  

 

Longitudinal Stress 

Consider the same cylindrical shell, subjected to the same internal pressure as shown in Fig.  

(a) and (b). We know that as a result of the internal pressure, the cylinder also has a tendency 

to split into two pieces as shown in the figure. 

Let                  p = Intensity of internal pressure, 

l = Length of the shell, 

d = Diameter of the shell and 

t = Thickness of the shell. 



`  
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Change in Dimensions of a Thin Cylindrical Shell due to an Internal Pressure 

Thin cylindrical shell subjected to an internal pressure, its walls will also be subjected to lateral 

strain. The effect of the lateral strains is to cause some change in the dimensions (i.e., length 

and diameter) of the shell. Now consider a thin cylindrical shell subjected to an internal 

pressure. 

Let                    l = Length of the shell,  

                         d = Diameter of the shell, 



`  

                         t = Thickness of the shell and                        p = Intensity of the internal pressure. 

 

Change in Volume of a Thin Cylindrical Shell due to an Internal Pressure 

A little consideration will show that increase in the length and diameter of the shell will also 

increase its volume. Now consider a thin cylindrical shell subjected to an internal 

pressure. 

Let   l = Original length 

         d = Original diameter, 



`  

          δl = Change in length due to pressure and  

         δd = Change in diameter due to pressure. 

 

 



 

   

 

Tutorial Questions 
 

1. Derive an expression for the shear stress produced in a circular shaft which is 

subjected to torsion. What are the assumptions made in the above derivation ? 

2. a)Derive the formula for the hoop stress in a thin cylindrical shell subjected to 
an internal pressure. 

            b) A gas cylinder of thickness 25 mm and has an internal diameter of 1500 mm. 

              The tensile stress in the gas cylinder material is not to exceed 100 N/mm2. 
Calculate the allowable internal pressure of the gas inside the cylinder. 

3. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal 

pressure of 1.2 MPa.  If the thickness of the sheet is 12mm, find the circumferential stress, 
longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and μ= 0.3. 

4. A Hollow shaft is to transmit 400 KW power at 120 rpm. If the shear stress is not exceed 60 

N/mm2 and internal diameter is 0.65 of external diameter. Find the internal and external 

diameters assuming maximum torque is 1.5 times the mean 
5. A hollow shaft of diameter ratio 3/8 is to transmit 395 kW at 120 rpm. The maximum torque 

being 24% greater than the mean, the shear stress is not to exceed 65 MPa and the twist in a 

length of 6 m is not to exceed 3 degrees. Calculate its external and internal diameters which 

would satisfy both the above said conditions. Take G=9.2×10
4 

MPa. 
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Assignment Questions 

 
1. A cylindrical vessel 2m  long and 500mm in diameter with 10mm thick plates is subjected to 

an internal pressure of 3MPa.Calculate the change in volume of the vessel .Take E=200GPa 

and poissons ratio=0.3 for the  vessel  material. 

2. A shaft is to be transmitted 100KW at 240 rpm.  If the allowable shear stresses of the material 

is 60MPa.  The shaft is not to twist more than 10 in a length of 3.5 mts. Find the diameter of 

the shaft based on strength and stiffness criteria.  The modulus of rigidity of the material (N) 

is 80 X 103N/mm2.  

3. A cylindrical vessel 3m  long and 500mm in diameter with 10mm thick plates is subjected to 

an internal pressure of 3MPa.Calculate the change in volume of the vessel .Take E=210GPa 

and Poisson’s ratio=0.3 for the  vessel  material 

4. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal 

pressure of 1.2 MPa.  If the thickness of the sheet is 12mm, find the circumferential stress, 

longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and μ= 0.3. 

5. A thin cylindrical shell is 3m long and 1m in internal diameter. It is subjected to internal 

pressure of 1.2 MPa.  If the thickness of the sheet is 12mm, find the circumferential stress, 

longitudinal stress, changes in diameter, length and volume. Take E=200 GPa and μ= 0.3. 

6. A hallow shaft of outside diameter 80 mm and inside diameter 50 mm is made of aluminium     

having shear modulus  G = 27GPa. When the shaft is subjected to a torque  T = 4.8 kN-m, 

what is the maximum shear strain and maximum normal strain in the bar? 
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